Suppr超能文献

研究ZnO/FeO与g-CN之间的异质结以增强可见光照射下的光催化产氢性能。

Investigating the Heteronjunction between ZnO/FeO and g-CN for an Enhanced Photocatalytic H production under visible-light irradiation.

作者信息

Mao Na

机构信息

Shaanxi Key Laboratory for Advanced Energy Devices, Key Laboratory for Macromolecular Science of Shaanxi Province, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, P.R. China.

College of Chemistry and Materials, Weinan Normal University, Weinan, Shaanxi, 714099, P.R. China.

出版信息

Sci Rep. 2019 Aug 27;9(1):12383. doi: 10.1038/s41598-019-48730-z.

Abstract

A series of ZnO/FeO/g-CN photocatalysts were synthetized by impregnation of g-CN with Zn(NO)·6HO, and Fe(NO)·9HO followed by calcination. The morphology, chemical composition, and structure of the resulted materials were carefully analyzed by various characterization techniques. The photocatalytic performance of ZnO/FeO/g-CN composites was evaluated based on the H evolution from water splitting reaction. The results showed that the ZnO/FeO/g-CN composite can effectively produce more H than pure g-CN when irradiated under visible-light. H production rate over 3-ZnO/FeO/g-CN composite was of 25 μmol·h, which is 4 times higher than that obtained in the presence of pure g-CN, clearly showing a significant improvement of the photocatalytic activity of the prepared nanocomposite. This result was attributed to the formation of a heterojunction between g-CN and ZnO/FeO, which delayed the recombination of holes-electrons pairs and resulted in a remarkable increase in photocatalytic performance.

摘要

通过用Zn(NO₃)₂·6H₂O和Fe(NO₃)₃·9H₂O浸渍g-C₃N₄,随后进行煅烧,合成了一系列ZnO/Fe₂O₃/g-C₃N₄光催化剂。通过各种表征技术对所得材料的形貌、化学成分和结构进行了仔细分析。基于水分解反应产生的H₂对ZnO/Fe₂O₃/g-C₃N₄复合材料的光催化性能进行了评估。结果表明,当在可见光下照射时,ZnO/Fe₂O₃/g-C₃N₄复合材料比纯g-C₃N₄能更有效地产生更多的H₂。3-ZnO/Fe₂O₃/g-C₃N₄复合材料的H₂产率为25 μmol·h⁻¹,这比在纯g-C₃N₄存在下获得的产率高4倍,清楚地表明所制备的纳米复合材料的光催化活性有显著提高。该结果归因于g-C₃N₄与ZnO/Fe₂O₃之间形成了异质结,这延迟了空穴-电子对的复合,并导致光催化性能显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e5/6712215/a6ffd58804e2/41598_2019_48730_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验