Suppr超能文献

静电驱动的自分类和自组装四肽中的纳米结构形态。

Electrostatic-driven self-sorting and nanostructure speciation in self-assembling tetrapeptides.

机构信息

Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Nanoscale. 2019 Sep 21;11(35):16534-16543. doi: 10.1039/c9nr03440d. Epub 2019 Aug 28.

Abstract

Significant efforts in the field of supramolecular materials have strived to co-assemble small molecules in order to realize individual nanostructures with multiple, tunable activities. The design of self-assembling motifs bearing opposite charges is one commonly used method, with favorable electrostatic interactions used to promote mixing in a resulting co-assembly. This approach, at the same time, contrasts with a typical thermodynamic preference for self-sorting. Moreover, rigorous experimental techniques which can clearly elucidate co-assembly from self-sorting are limited. Here we describe the self-assembly of two oppositely charged tetrapeptides yielding highly disparate nanostructures of fibrillar and spherical assemblies. Upon mixing at different ratios, the disparate nanostructure of the parent peptides remain. Interestingly, while the assemblies appear self-sorted, surface-mediated interactions between spherical and fibrous assemblies translate to increased mechanical properties through enhanced fiber bundling. Moreover, the observed self-sorting is a thermodynamic product and not a result of kinetically trapped pre-existing structures. Taken together, and with the benefit of disparate nanostructures in the parent peptides, we have shown in our system experimental evidence for electrostatic-driven self-sorting in oligopeptide self-assembly.

摘要

在超分子材料领域,人们做出了巨大的努力,试图将小分子共组装,从而实现具有多种可调活性的单个纳米结构。带相反电荷的自组装基序的设计是一种常用的方法,有利的静电相互作用用于促进共组装中的混合。这种方法同时与典型的自分类热力学偏好形成对比。此外,能够清楚阐明共组装和自组装的严格实验技术受到限制。在这里,我们描述了两种带相反电荷的四肽的自组装,得到了纤维状和球状组装的高度不同的纳米结构。在不同比例混合时,亲肽的不同纳米结构仍然存在。有趣的是,虽然组装看起来是自分类的,但球形和纤维状组装之间的表面介导相互作用通过增强纤维束合并转化为增强的机械性能。此外,观察到的自分类是热力学产物,而不是动力学捕获的预先存在结构的结果。总之,在亲肽具有不同纳米结构的情况下,我们在我们的系统中展示了实验证据,证明了在寡肽自组装中静电驱动的自分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验