Ponjoan Anna, Garre-Olmo Josep, Blanch Jordi, Fages Ester, Alves-Cabratosa Lia, Martí-Lluch Ruth, Comas-Cufí Marc, Parramon Dídac, García-Gil María, Ramos Rafel
Vascular Health Research Group (ISV-Girona), Jordi Gol Institute for Primary Care Research (IDIAPJGol), Barcelona, Catalonia, Spain.
Universitat Autònoma de Barcelona , Bellaterra, Catalonia, Spain.
Clin Epidemiol. 2019 Jul 5;11:509-518. doi: 10.2147/CLEP.S206770. eCollection 2019.
Electronic health records (EHR) from primary care are emerging in Alzheimer's disease (AD) research, but their accuracy is a concern. We aimed to validate AD diagnoses from primary care using additional information provided by general practitioners (GPs), and a register of dementias.
This retrospective observational study obtained data from the System for the Development of Research in Primary Care (SIDIAP). Three algorithms combined International Statistical Classification of Diseases (ICD-10) and Anatomical Therapeutic Chemical codes to identify AD cases in SIDIAP. GPs evaluated dementia diagnoses by means of an online survey. We linked data from the Register of Dementias of Girona and from SIDIAP. We estimated the positive predictive value (PPV) and sensitivity and provided results stratified by age, sex and severity.
Using survey data from the GPs, PPV of AD diagnosis was 89.8% (95% CI: 84.7-94.9). Using the dataset linkage, PPV was 74.8 (95% CI: 73.1-76.4) for algorithm A1 (AD diagnoses), and 72.3 (95% CI: 70.7-73.9) for algorithm A3 (diagnosed or treated patients without previous conditions); sensitivity was 71.4 (95% CI: 69.6-73.0) and 83.3 (95% CI: 81.8-84.6) for algorithms A1 (AD diagnoses) and A3, respectively. Stratified results did not differ by age, but PPV and sensitivity estimates decreased amongst men and severe patients, respectively.
PPV estimates differed depending on the gold standard. The development of algorithms integrating diagnoses and treatment of dementia improved the AD case ascertainment. PPV and sensitivity estimates were high and indicated that AD codes recorded in a large primary care database were sufficiently accurate for research purposes.
来自初级保健的电子健康记录(EHR)正在阿尔茨海默病(AD)研究中兴起,但其准确性令人担忧。我们旨在利用全科医生(GP)提供的额外信息以及痴呆症登记册来验证初级保健中的AD诊断。
这项回顾性观察研究从初级保健研究发展系统(SIDIAP)获取数据。三种算法结合了国际疾病分类(ICD - 10)和解剖治疗化学代码,以识别SIDIAP中的AD病例。全科医生通过在线调查评估痴呆症诊断。我们将来自赫罗纳痴呆症登记册和SIDIAP的数据进行了关联。我们估计了阳性预测值(PPV)和敏感性,并按年龄、性别和严重程度分层提供结果。
使用全科医生的调查数据,AD诊断的PPV为89.8%(95%置信区间:84.7 - 94.9)。使用数据集关联,算法A1(AD诊断)的PPV为74.8(95%置信区间:73.1 - 76.4),算法A3(无既往病史的已诊断或已治疗患者)的PPV为72.3(95%置信区间:70.7 - 73.9);算法A1(AD诊断)和A3的敏感性分别为71.4(95%置信区间:69.6 - 73.0)和83.3(95%置信区间:81.8 - 84.6)。分层结果在年龄方面没有差异,但PPV和敏感性估计值在男性和重症患者中分别降低。
PPV估计值因金标准而异。整合痴呆症诊断和治疗的算法的开发改善了AD病例的确定。PPV和敏感性估计值较高,表明在大型初级保健数据库中记录的AD代码对于研究目的来说足够准确。