Espinoza Eli M, Clark John A, Derr James B, Bao Duoduo, Georgieva Boriana, Quina Frank H, Vullev Valentine I
Department of Chemistry, Department of Bioengineering, Department of Biochemistry, and Materials Science and Engineering Program, University of California, Riverside, California 92521, United States.
Instituto de Química, Universidade de São Paulo, Avenida Lineu Prestes 748, Cidade Universitária, São Paulo 05508-000, Brazil.
ACS Omega. 2018 Oct 9;3(10):12857-12867. doi: 10.1021/acsomega.8b01581. eCollection 2018 Oct 31.
The electronic properties of amide linkers, which are intricate components of biomolecules, offer a wealth of unexplored possibilities. Herein, we demonstrate how the different modes of attaching an amide to a pyrene chromophore affect the electrochemical and optical properties of the chromophore. Thus, although they cause minimal spectral shifts, amide substituents can improve either the electron-accepting or electron-donating capabilities of pyrene. Specifically, inversion of the amide orientation shifts the reduction potentials by 200 mV. These trends indicate that, although amides affect to a similar extent the energies of the ground and singlet excited states of pyrene, the effects on the doublet states of its radical ions are distinctly different. This behavior reflects the unusually strong orientation dependence of the resonance effects of amide substituents, which should extend to amide substituents on other types of chromophores in general. These results represent an example where the Hammett sigma constants fail to predict substituent effects on electrochemical properties. On the other hand, Swain-Lupton parameters are found to be in good agreement with the observed trends. Examination of the frontier orbitals of the pyrene derivatives and their components reveals the underlying reason for the observed amide effects on the electronic properties of this polycyclic aromatic hydrocarbon and points to key molecular-design strategies for electronic and energy-conversion systems.
酰胺连接体作为生物分子的复杂组成部分,其电子特性提供了大量未被探索的可能性。在此,我们展示了将酰胺连接到芘发色团的不同方式如何影响发色团的电化学和光学性质。因此,尽管酰胺取代基引起的光谱位移极小,但它们可以提高芘的电子接受或电子供体能力。具体而言,酰胺取向的反转使还原电位移动了200 mV。这些趋势表明,尽管酰胺对芘的基态和单重激发态能量的影响程度相似,但对其自由基离子的双重态的影响却明显不同。这种行为反映了酰胺取代基共振效应异常强烈的取向依赖性,这种依赖性通常应扩展到其他类型发色团上的酰胺取代基。这些结果代表了一个例子,其中哈米特σ常数无法预测取代基对电化学性质的影响。另一方面,发现斯温-卢普顿参数与观察到的趋势高度吻合。对芘衍生物及其组分的前沿轨道进行研究,揭示了所观察到的酰胺对这种多环芳烃电子性质产生影响的根本原因,并指出了电子和能量转换系统的关键分子设计策略。