Sabzevari Mina, Cree Duncan E, Wilson Lee D
Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada.
Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
ACS Omega. 2018 Oct 11;3(10):13045-13054. doi: 10.1021/acsomega.8b01871. eCollection 2018 Oct 31.
Graphene oxide (GO) was cross-linked with chitosan to yield a composite (GO-LCTS) with variable morphology, enhanced surface area, and notably high methylene blue (MB) adsorption capacity. The materials were structurally characterized using thermogravimetric analysis and spectroscopic methods (X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and C solid-state NMR) to support that cross-linking occurs between the amine groups of chitosan and the -COOH groups of GO. Equilibrium swelling studies provide support for the enhanced structural stability of GO-cross-linked materials over the synthetic precursors. Scanning electron microscopy studies reveal the enhanced surface area and variable morphology of the cross-linked GO materials, along with equilibrium and kinetic uptake results with MB dye in aqueous media, revealing greater uptake of GO-LCTS composites over pristine GO. The monolayer uptake capacity ( ; mg g) with MB reveals twofold variation for , where GO-LCTS (402.6 mg g) > GO (286.9 mg g). The kinetic uptake profiles of MB follow a pseudo-second-order trend, where the GO composite shows more rapid uptake over GO. This study reveals that the sorption properties of GO are markedly improved upon formation of a GO-chitosan composite. The facile cross-linking strategy of GO reveals that its physicochemical properties are tunable and versatile for a wider field of application for contaminant removal, especially over multiple adsorption-desorption cycles when compared against pristine GO in its highly dispersed nanoparticle form.
氧化石墨烯(GO)与壳聚糖交联,得到一种具有可变形态、增大的表面积和显著高的亚甲基蓝(MB)吸附容量的复合材料(GO-LCTS)。使用热重分析和光谱方法(X射线衍射、傅里叶变换红外光谱、拉曼光谱和碳固体核磁共振)对材料进行结构表征,以支持壳聚糖的胺基与GO的-COOH基团之间发生交联。平衡溶胀研究为GO交联材料相对于合成前体增强的结构稳定性提供了支持。扫描电子显微镜研究揭示了交联GO材料增大的表面积和可变形态,以及在水性介质中MB染料的平衡和动力学吸附结果,表明GO-LCTS复合材料比原始GO具有更大的吸附量。MB的单层吸附容量(;mg g)显示出对于 有两倍的变化,其中GO-LCTS(402.6 mg g)>GO(286.9 mg g)。MB的动力学吸附曲线遵循准二级趋势,其中GO复合材料比GO显示出更快的吸附。这项研究表明,形成GO-壳聚糖复合材料后,GO的吸附性能得到显著改善。GO的简便交联策略表明,其物理化学性质是可调的,并且在污染物去除的更广泛应用领域中具有通用性,特别是与高度分散的纳米颗粒形式的原始GO相比,在多个吸附-解吸循环中表现更优。