Suppr超能文献

以碱金属碳酸盐修饰的SnO作为倒置有机太阳能电池的稳健电子传输层

Modified SnO with Alkali Carbonates as Robust Electron-Transport Layers for Inverted Organic Solar Cells.

作者信息

Tran Van-Huong, Park Hanok, Eom Seung Hun, Yoon Sung Cheol, Lee Soo-Hyoung

机构信息

School of Advanced Materials Engineering and Research Center of Advanced Materials Development and School of Semiconductor and Chemical Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.

Division of Advanced Materials, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.

出版信息

ACS Omega. 2018 Dec 27;3(12):18398-18410. doi: 10.1021/acsomega.8b02773. eCollection 2018 Dec 31.

Abstract

We report for the first time that alkali carbonates (LiCO, KCO, and RbCO) based on a low-temperature solution process can be used as interfacial modifiers for SnO as robust electron-transport layers (ETL) for inverted organic solar cells (iOSCs). The room-temperature photoluminescence, the electron-only devices, and the impedance studies altogether suggested the interfacial properties of the alkali carbonates-modified SnO ETLs, which were much better than those based on the SnO only, provided efficient charge transport, and reduced the charge recombination rates for iOSCs. The iOSCs using the polymer donor poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-;4,5-']dithiophene-2,6-diyl--(4-(2-ethylhexyl)-3-fluorothieno[3,4-]thiophene-)-2-carboxylate-2-6-diyl] and the fullerene acceptor phenyl-C-butyric acid methyl ester as the active layer showed the average power-conversion efficiencies (PCEs) based on ten devices of 6.70, 6.85, and 7.35% with LiCO-, KCO-, and RbCO-modified SnO as ETLs, respectively; these are more than 22, 24, and 33% higher than those based on the SnO only (5.49%). Moreover, these iOSC devices exhibited long-term stabilities, with over 90% PCEs remaining after the devices were stored in ambient air for 6 weeks without encapsulations. We believe that alkali carbonates-modified SnO approaches are an effective way to achieve stable and highly efficient iOSCs and might also be suitable for other optoelectronic devices where an ETL is needed, such as perovskite solar cells or organic light-emitting diodes.

摘要

我们首次报道,基于低温溶液法的碱金属碳酸盐(LiCO、KCO和RbCO)可作为界面改性剂用于SnO,作为倒置有机太阳能电池(iOSC)的稳健电子传输层(ETL)。室温光致发光、仅电子器件和阻抗研究共同表明了碱金属碳酸盐改性的SnO ETL的界面性质,其比仅基于SnO的界面性质要好得多,提供了有效的电荷传输,并降低了iOSC的电荷复合率。使用聚合物给体聚[4,8-双(5-(2-乙基己基)噻吩-2-基)苯并[1,2-;4,5-']二噻吩-2,6-二基-(4-(2-乙基己基)-3-氟噻吩并[3,4-]噻吩-)-2-羧酸酯-2,6-二基]和富勒烯受体苯基-C-丁酸甲酯作为活性层的iOSC,以LiCO-、KCO-和RbCO改性的SnO作为ETL时,基于十个器件的平均功率转换效率(PCE)分别为6.70%、6.85%和7.35%;这些效率分别比仅基于SnO(5.49%)的效率高出22%、24%和33%以上。此外,这些iOSC器件表现出长期稳定性,在未封装的情况下在环境空气中储存6周后,仍有超过90%的PCE保留。我们认为,碱金属碳酸盐改性的SnO方法是实现稳定且高效的iOSC的有效途径,也可能适用于其他需要ETL的光电器件,如钙钛矿太阳能电池或有机发光二极管。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e665/6643860/7045c220b7c3/ao-2018-02773d_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验