Suppr超能文献

用于锂离子电池的纳米结构LiNiMnCoO电极的形貌控制一步合成法。

Morphology-Controlled One-Step Synthesis of Nanostructured LiNiMnCoO Electrodes for Li-Ion Batteries.

作者信息

Wang Yang, Roller Justin, Maric Radenka

机构信息

Department of Materials Science and Engineering, University of Connecticut, 97 N. Eagleville Road, Storrs, Connecticut 06269, United States.

Center for Clean Energy Engineering, University of Connecticut, 44 Weaver Road, Storrs, Connecticut 06269, United States.

出版信息

ACS Omega. 2018 Apr 9;3(4):3966-3973. doi: 10.1021/acsomega.8b00380. eCollection 2018 Apr 30.

Abstract

Nanostructured electrodes effectively enhance the kinetics of the charge/discharge process in lithium-ion (Li-ion) batteries. However, the fabrication of these electrodes often involves complex processing steps. This study demonstrates a one-step improved flame spray pyrolysis synthesis approach to directly deposit the most common Li-ion battery cathode material LiNiMnCoO onto current collectors, which is identified as reactive spray deposition technology (RSDT). Because of the economical and continuous nature of RSDT, the industrial scale of manufacturing nanostructured electrodes for Li-ion batteries can be potentially developed. Morphologies of the electrodes are well controlled so that their electrochemical properties can be tailored to accommodate intended applications. In detail, by adjusting the precursor concentration in the solution feed during the operation of RSDT, the specific surface area of synthesized material can be fine-tuned accordingly. Although the electrodes prepared with low precursor concentration exhibit the highest surface area and deliver the highest initial discharge capacity of 192.1 mAh g, the most stable cycling performance is demonstrated by the electrodes fabricated with high precursor concentration, retaining 93.6% of the initial capacity after 100 cycles in half-cell testing. This innovative direct deposition method considerably simplifies the manufacture process of high-performance nanostructured electrodes and enables effortless modification of their properties. Moreover, no hazardous waste is generated from this synthesis route.

摘要

纳米结构电极有效地增强了锂离子电池中充电/放电过程的动力学。然而,这些电极的制造通常涉及复杂的加工步骤。本研究展示了一种一步改进的火焰喷雾热解合成方法,可将最常见的锂离子电池正极材料LiNiMnCoO直接沉积在集流体上,该方法被确定为反应喷雾沉积技术(RSDT)。由于RSDT具有经济和连续的特性,有可能开发出用于制造锂离子电池纳米结构电极的工业规模。电极的形态得到了很好的控制,因此它们的电化学性能可以根据预期应用进行调整。具体而言,通过在RSDT操作过程中调整溶液进料中前驱体的浓度,可以相应地微调合成材料的比表面积。尽管用低前驱体浓度制备的电极表现出最高的表面积并提供了192.1 mAh g的最高初始放电容量,但用高前驱体浓度制造的电极表现出最稳定的循环性能,在半电池测试中100次循环后保留了93.6%的初始容量。这种创新的直接沉积方法大大简化了高性能纳米结构电极的制造过程,并能够轻松地改变其性能。此外,该合成路线不会产生有害废物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b46/6641602/b9940d95d56a/ao-2018-003808_0005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验