Zhao Xueyan, Benedek Peter, Engel Konstantin M, Schenk Florian M, Clarysse Jasper, Shunmugasundaram Ramesh, Landuyt Annelies, Müller Christoph R, Stark Wendelin J, Wood Vanessa
Materials and Device Engineering Group, Institute for Electronics, Department of Information Technology and Electrical Engineering, ETH Zurich Gloriastrasse 35 8092 Zurich Switzerland
Department of Chemical Engineering, Stanford University Stanford CA 94305 USA.
RSC Adv. 2025 Aug 7;15(34):28075-28083. doi: 10.1039/d5ra02976g. eCollection 2025 Aug 1.
To achieve higher energy densities in lithium-ion batteries, improvements in the battery cathode performance are crucial. As cathode materials, nickel-rich layered transition metal oxides play an important role in the market. However, they suffer from surface degradation which contributes to the capacity fade. Using nanoparticles, which offer a large surface to volume ratio, these surface degradation reactions can be better understood. But to do so, nanoparticles with properties similar to those of primary particles in commercial NMC are necessary. In this work, we present the synthesis of sub-100 nm of LiNiMnCoO (NMC111) nanoparticles through a flame spray pyrolysis and post-calcination. We study the phase purity and electrochemical performance of the NMC111 nanoparticles as a function of the calcination temperature and demonstrate that optimizing the calcination temperature enables us to achieve a pure layered phase and electrochemical performance on par with commercial NMC111 particles. Mild acid treatment can be used to remove surface impurities that develop with air exposure and improve the long-term stability.
为了在锂离子电池中实现更高的能量密度,提高电池阴极性能至关重要。作为阴极材料,富镍层状过渡金属氧化物在市场中发挥着重要作用。然而,它们存在表面降解问题,这会导致容量衰减。使用具有大表面积与体积比的纳米颗粒,可以更好地理解这些表面降解反应。但是要做到这一点,需要具有与商业NMC中一次颗粒相似性质的纳米颗粒。在这项工作中,我们展示了通过火焰喷雾热解和后煅烧合成亚100 nm的LiNiMnCoO(NMC111)纳米颗粒。我们研究了NMC111纳米颗粒的相纯度和电化学性能与煅烧温度的关系,并证明优化煅烧温度能够使我们获得纯层状相以及与商业NMC111颗粒相当的电化学性能。温和的酸处理可用于去除暴露在空气中产生的表面杂质,并提高长期稳定性。