Ventrapragada Lakshman K, Zhu Jingyi, Creager Stephen E, Rao Apparao M, Podila Ramakrishna
Department of Chemistry and Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634, United States.
Clemson Nanomaterials Institute, Clemson, South Carolina 29634, United States.
ACS Omega. 2018 Apr 24;3(4):4502-4508. doi: 10.1021/acsomega.8b00027. eCollection 2018 Apr 30.
Resistive interfaces within the electrodes limit the energy and power densities of a battery, for example, a Li-ion battery (LIB). Typically, active materials are mixed with conductive additives in organic solvents to form a slurry, which is then coated on current collectors (e.g., bare or carbon-coated Al foils) to reduce the inherent resistance of the active material. Although many approaches using nanomaterials to either replace Al foils or improve conductivity within the active materials have been previously demonstrated, the resistance at the current collector active material interface (CCAMI), a key factor for enhancing the energy and power densities, remains unaddressed. We show that carbon nanotubes (CNTs), either directly grown or spray-coated on Al foils, are highly effective in reducing the CCAMI resistance of traditional LIB cathode materials (LiFePO or LFP and LiNiCoMnO or NMC). Moreover, the CNT coatings displace the need for currently used toxic organic solvents (e.g., -methyl-2-pyrrolidone) by providing capillary channels, which improve the wetting of aqueous dispersions containing active materials. The vertically aligned CNT-coated electrodes exhibited energy densities as high as (1) ∼500 W h kg at ∼170 W kg for LFP and (2) ∼760 W h kg at ∼570 W kg for NMC. The LIBs with CCAMI-engineered electrodes withstood discharge rates as high as 600 mA g for 500 cycles in the case of LFP, where commercial electrodes failed. The CNT-based CCAMI engineering approach is versatile with wide applicability to improve the performance of even textured active materials for both cathodes and anodes.
电极内部的电阻性界面限制了电池(例如锂离子电池,LIB)的能量和功率密度。通常,活性材料与导电添加剂在有机溶剂中混合形成浆料,然后涂覆在集流体(例如裸露的或碳包覆的铝箔)上,以降低活性材料的固有电阻。尽管先前已经展示了许多使用纳米材料来替代铝箔或提高活性材料内部导电性的方法,但集流体-活性材料界面(CCAMI)处的电阻这一提高能量和功率密度的关键因素仍未得到解决。我们表明,直接生长或喷涂在铝箔上的碳纳米管(CNT)在降低传统LIB阴极材料(磷酸铁锂或LFP以及镍钴锰酸锂或NMC)的CCAMI电阻方面非常有效。此外,CNT涂层通过提供毛细管通道取代了目前使用的有毒有机溶剂(例如N-甲基-2-吡咯烷酮)的需求,这些通道改善了含活性材料的水分散体的润湿性。垂直排列的CNT涂层电极在(1)对于LFP,在约170 W/kg时表现出高达约500 W h/kg的能量密度,以及(2)对于NMC,在约570 W/kg时表现出高达约760 W h/kg的能量密度。对于LFP,具有CCAMI工程化电极的LIB在高达600 mA/g的放电速率下可经受500次循环,而商业电极在此情况下则失效。基于CNT的CCAMI工程方法具有通用性,广泛适用于改善甚至是有纹理的活性材料在阴极和阳极方面的性能。