Isozaki Katsuhiro, Shimoaka Takafumi, Oshiro Satoshi, Yamaguchi Asako, Pincella Francesca, Ueno Ryo, Hasegawa Takeshi, Watanabe Takashi, Takaya Hikaru, Nakamura Masaharu
International Research Center for Elements Science, Institute for Chemical Research, Division of Environmental Chemistry, Institute for Chemical Research, and Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Kyoto, Japan.
Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.
ACS Omega. 2018 Jul 9;3(7):7483-7493. doi: 10.1021/acsomega.8b01161. eCollection 2018 Jul 31.
We have developed novel surface plasmon resonance (SPR) sensor chips whose surfaces bear newly synthesized functional self-assembled monolayer (SAM) anchoring lignin through covalent chemical bonds. The SPR sensor chips are remarkably robust and suitable for repetitive and accurate measurement of noncovalent lignin-peptide interactions, which is of significant interest in the chemical or biochemical conversion of renewable woody biomass to valuable chemical feedstocks. The lignin-anchored SAMs were prepared for the first time by click chemistry based on an azide-alkyne Huisgen cycloaddition: mixed SAMs are fabricated on gold thin film using a mixture of alkynyl and methyl thioalkyloligo(ethylene oxide) disulfides and then reacted with azidated milled wood lignins to furnish the functional SAMs anchoring lignins covalently. The resulting SAMs were characterized using infrared reflection-absorption, Raman, and X-ray photoelectron spectroscopies to confirm covalent immobilization of the lignins to the SAMs via triazole linkages and also to reveal that the SAM formation induces a helical conformation of the ethylene oxide chains. Further, SPR measurements of the noncovalent lignin-peptide interactions using lignin-binding peptides have demonstrated high reproducibility and durability of the prepared lignin-anchored sensor chips.
我们开发了新型表面等离子体共振(SPR)传感器芯片,其表面通过共价化学键承载新合成的功能性自组装单分子层(SAM),该单分子层锚定着木质素。SPR传感器芯片非常坚固,适用于对非共价木质素-肽相互作用进行重复且精确的测量,这在将可再生木质生物质化学或生物化学转化为有价值的化学原料方面具有重大意义。基于叠氮化物-炔烃惠斯根环加成反应的点击化学首次制备了锚定木质素的SAM:使用炔基和甲硫烷基低聚(环氧乙烷)二硫化物的混合物在金薄膜上制备混合SAM,然后使其与叠氮化磨木木质素反应,以提供共价锚定木质素的功能性SAM。使用红外反射吸收光谱、拉曼光谱和X射线光电子能谱对所得SAM进行表征,以确认木质素通过三唑键共价固定在SAM上,并揭示SAM的形成诱导了环氧乙烷链的螺旋构象。此外,使用木质素结合肽对非共价木质素-肽相互作用进行的SPR测量表明,所制备的锚定木质素的传感器芯片具有高重现性和耐用性。