Lotz Katrin, Wütscher Annika, Düdder Hendrik, Berger Cornelius M, Russo Carmela, Mukherjee Kallol, Schwaab Gerhard, Havenith Martina, Muhler Martin
Laboratory of Industrial Chemistry and Physical Chemistry II, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
Instituto di Ricerche sulla Combustione IRC-CNR, P. Tecchio 80, 80125 Napoli, Italy.
ACS Omega. 2019 Feb 28;4(2):4448-4460. doi: 10.1021/acsomega.8b03369.
The applied pyrolysis temperature was found to strongly affect composition, structure, and oxidation behavior of pure and iron oxide nanoparticle (NP)-loaded carbon materials originating from hydrothermal carbonization (HTC) of cellulose. A strong loss of functional groups during pyrolysis at temperatures beyond 300 °C of the HTC-derived hydrochars was observed, resulting in an increase of the carbon content up to 95 wt% for the carbon materials pyrolyzed at 800 °C and an increase of the specific surface area with a maximum of 520 m g at a pyrolysis temperature of 600 °C. Devolatilization mainly took place in the range from 300 to 500 °C, releasing light pyrolysis gases such as CO, CO, HO and larger oxygen-containing molecules up to C. The presence of iron oxide NPs lowered the specific surface areas by about 200 m g and resulted in the formation of mesopores. For the iron oxide-containing composites pyrolyzed up to 500 °C, the oxidation temperature was decreased by about 100 °C, indicating tight contact between the iron oxide NPs and the carbon matrix. For higher pyrolysis temperatures, this catalytic effect of iron oxide on carbon oxidation vanished due to carbothermal reduction to iron and iron carbide, which, however, catalyzed the graphitization of the carbon matrix. Thus, the well-controlled two-step synthesis based on a biomass-derived precursor yielded stably embedded iron NPs in a corrosion-resistant graphitic carbon matrix.
研究发现,所施加的热解温度对源自纤维素水热碳化(HTC)的纯碳材料以及负载氧化铁纳米颗粒(NP)的碳材料的组成、结构和氧化行为有强烈影响。在超过300°C的温度下对HTC衍生的水热炭进行热解时,观察到官能团大量损失,导致在800°C热解的碳材料的碳含量增加至95 wt%,并且比表面积增加,在600°C的热解温度下最大比表面积为520 m²/g。脱挥发分主要发生在300至500°C的范围内,释放出轻质热解气体,如CO、CO₂、H₂O以及直至C₅的较大含氧化合物分子。氧化铁纳米颗粒的存在使比表面积降低约200 m²/g,并导致形成中孔。对于热解至500°C的含氧化铁复合材料,氧化温度降低约100°C,这表明氧化铁纳米颗粒与碳基体之间紧密接触。对于更高的热解温度,由于碳热还原生成铁和碳化铁,氧化铁对碳氧化的这种催化作用消失,然而,铁和碳化铁催化了碳基体的石墨化。因此,基于生物质衍生前驱体的可控两步合成法在耐腐蚀的石墨碳基体中产生了稳定嵌入的铁纳米颗粒。