Suppr超能文献

具有增强饱和磁化强度的自组装超顺磁性CoZnFeO的磁性、赝电容性和羟基电传感特性

Magnetic, Pseudocapacitive, and HO-Electrosensing Properties of Self-Assembled Superparamagnetic CoZnFeO with Enhanced Saturation Magnetization.

作者信息

Mondal Rituparna, Sarkar Koyel, Dey Subhrajyoti, Majumdar Dipanwita, Bhattacharya Swapan Kumar, Sen Pintu, Kumar Sanjay

机构信息

Department of Physics and Department of Chemistry, Jadavpur University, Kolkata 700032, India.

Swami Vivekananda Institute of Science & Technology, Sonarpur, Kolkata 700145, India.

出版信息

ACS Omega. 2019 Jul 24;4(7):12632-12646. doi: 10.1021/acsomega.9b01362. eCollection 2019 Jul 31.

Abstract

The present work explores the structural, microstructural, optical, magnetic, and hyperfine properties of CoZnFeO microspheres, which have been synthesized by a novel template-free solvothermal method. Powder X-ray diffraction, electron microscopic, and Fourier transform infrared spectroscopic techniques were employed to thoroughly investigate the structural and microstructural properties of CoZnFeO microspheres. The results revealed that the microspheres (average diameter ∼121 nm) have been formed by self-assembly of nanoparticles with an average particle size of ∼12 nm. UV-vis diffuse reflectance spectroscopic and photoluminescence studies have been performed to study the optical properties of the sample. The studies indicate that CoZnFeO microspheres exhibit a lower band gap value and enhanced PL intensity compared to their nanoparticle counterpart. The outcomes of dc magnetic measurement and Mössbauer spectroscopic study confirm that the sample is ferrimagnetic in nature. The values of saturation magnetization are 76 and 116 emu g at 300 and 5 K, respectively, which are substantially larger than its nanosized counterpart. The infield Mössbauer spectroscopic study and Rietveld analysis of the PXRD pattern reveal that Fe ions have migrated from [B] to (A) sites resulting in the cation distribution: (Zn Fe )[Zn Co Fe ]O. Comparison of electrochemical performance of the CoZnFeO microspheres to that of the CoZnFeO nanoparticles reveals that the former displays greater specific capacitance (149.13 F g) than the latter (80.06 F g) due to its self-assembled porous structure. Moreover, it was found that CoZnFeO microspheres possess a better electrochemical response toward HO sensing than CoZnFeO nanoparticles in a wide linear range.

摘要

本工作探索了通过一种新型无模板溶剂热法合成的CoZnFeO微球的结构、微观结构、光学、磁性和超精细性质。采用粉末X射线衍射、电子显微镜和傅里叶变换红外光谱技术全面研究了CoZnFeO微球的结构和微观结构性质。结果表明,微球(平均直径约121 nm)由平均粒径约12 nm的纳米颗粒自组装形成。进行了紫外可见漫反射光谱和光致发光研究以研究样品的光学性质。研究表明,与纳米颗粒对应物相比,CoZnFeO微球表现出更低的带隙值和增强的PL强度。直流磁性测量和穆斯堡尔光谱研究的结果证实该样品本质上是亚铁磁性的。饱和磁化强度值在300 K和5 K时分别为76和116 emu g,明显大于其纳米尺寸对应物。内场穆斯堡尔光谱研究和PXRD图谱的Rietveld分析表明,Fe离子已从[B]位迁移到(A)位,导致阳离子分布为:(Zn Fe )[Zn Co Fe ]O。CoZnFeO微球与CoZnFeO纳米颗粒的电化学性能比较表明,由于其自组装多孔结构,前者显示出比后者(80.06 F g)更大的比电容(149.13 F g)。此外,发现在宽线性范围内,CoZnFeO微球对HO传感的电化学响应比CoZnFeO纳米颗粒更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40e6/6682044/e32cf8798ffa/ao-2019-01362x_0015.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验