Suppr超能文献

神经计算模型 GrowthEstimate:一种通过消化效率研究生物资源的模型。

Neural computational model GrowthEstimate: A model for studying living resources through digestive efficiency.

机构信息

Institute of Marine Research, Ecosystem Processes Research Group, Matredal, Norway.

Freelance Researcher, Bergen, Norway.

出版信息

PLoS One. 2019 Aug 28;14(8):e0216030. doi: 10.1371/journal.pone.0216030. eCollection 2019.

Abstract

The neural computational model GrowthEstimate is introduced with focusing on new perspectives for the practical estimation of weight specific growth rate (SGR, % day-1). It is developed using recurrent neural networks of reservoir computing type, for estimating SGR based on the known data of three key biological factors relating to growth. These factors are: (1) weight (g) for specifying the age of the growth stage; (2) digestive efficiency through the pyloric caecal activity ratio of trypsin to chymotrypsin (T/C ratio) for specifying genetic differences in food utilization and growth potential, basically resulting from food consumption under variations in food quality and environmental conditions; and (3) protein growth efficiency through the condition factor (CF, 100 × g cm-3), as higher dietary protein level affecting higher skeletal growth (length) and resulting in lower CF. The computational model was trained using four datasets of different salmonids with size variations. It was evaluated with 15% of each dataset, resulting in an acceptable range of SGR outputs. Additional tests with different species indicated similarity between the estimated SGR outputs and the real SGR values, and the same ranking of wild population growth. The developed model GrowthEstimate is exceptionally useful for the precise and comparable growth estimation of living resources at individual levels, especially in natural ecosystems where the studied individuals, environmental conditions, food availability and consumption rates cannot be controlled. It is a revelation and will help to minimize uncertainty in wild stock assessment process. This will improve our knowledge in nutritional ecology, through the biochemical effects of climate change and environmental impact on the growth performance quality of aquatic living resources in the wild, as well as in aquaculture. The original GrowthEstimate software is available at GitHub repository (https://github.com/RungruangsakTorrissenManoonpong/GrowthEstimate). All other relevant data are within the paper. It will be improved for generality for future use, and required co-operations of the biodata collections of different species from different climate zones. Therefore, a co-operation will be available.

摘要

引入了神经计算模型 GrowthEstimate,重点介绍了一种新的方法,用于实际估计特定体重增长率 (SGR,% day-1)。该模型使用储层计算类型的递归神经网络开发,可根据与生长相关的三个关键生物学因素的已知数据来估计 SGR。这些因素是:(1) 体重 (g),用于指定生长阶段的年龄;(2) 胰蛋白酶与糜蛋白酶的幽门盲囊活动比 (T/C 比),用于指定食物利用和生长潜力的遗传差异,这主要是由于在食物质量和环境条件变化下的食物消耗;以及 (3) 通过条件因子 (CF,100×g cm-3) 的蛋白质生长效率,较高的膳食蛋白质水平会影响更高的骨骼生长 (长度),从而导致 CF 降低。该计算模型使用四个具有不同大小的鲑鱼数据集进行训练。使用每个数据集的 15%进行评估,得到了可接受的 SGR 输出范围。对不同物种的附加测试表明,估计的 SGR 输出与实际 SGR 值之间存在相似性,并且野生种群生长的排名相同。开发的模型 GrowthEstimate 非常有用,可以在个体水平上对活体资源进行精确和可比的生长估计,特别是在自然生态系统中,无法控制研究个体、环境条件、食物供应和消耗率。这是一个启示,将有助于最大限度地减少野生种群评估过程中的不确定性。这将提高我们在营养生态学方面的知识,了解气候变化和环境影响对野生水生生物资源生长性能质量的生化影响,以及水产养殖。原始的 GrowthEstimate 软件可在 GitHub 存储库 (https://github.com/RungruangsakTorrissenManoonpong/GrowthEstimate) 中获得。所有其他相关数据均在本文中。未来将为通用性进行改进,并需要来自不同气候带的不同物种的生物数据收集合作。因此,将提供合作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5004/6713322/ba27af86c868/pone.0216030.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验