Suppr超能文献

预测食管腺癌患者癌症特异性死亡率的列线图:一项竞争风险分析

Nomogram predicting cancer-specific mortality in patients with esophageal adenocarcinoma: a competing risk analysis.

作者信息

Wu Xi-Xi, Chen Ren-Pin, Chen Rui-Cong, Gong Hong-Peng, Wang Bin-Feng, Li Ya-Ling, Lin Xin-Ran, Huang Zhi-Ming

机构信息

Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.

Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.

出版信息

J Thorac Dis. 2019 Jul;11(7):2990-3003. doi: 10.21037/jtd.2019.07.56.

Abstract

BACKGROUND

Many factors are reported to be related to the prognosis of patients with esophageal adenocarcinoma (EAC), but few reliable and straightforward tools for clinicians to estimate individual mortalities have been developed. This study aimed to evaluate the probability of cancer-specific death for patients with EAC and to build nomograms for predicting long-term cancer-specific mortality and overall mortality for EAC patients.

METHODS

Between 2004 and 2013, a total of 20,623 patients were identified from the surveillance, epidemiology, and end results (SEER) database and randomly divided into training (N=14,436) and validation (N=6,187) cohorts. The cumulative incidence functions (CIFs) of EAC-specific death and other causes were evaluated at the 1st, 3rd, and 5th year after diagnosis. We integrated the significant prognostic factors to construct nomograms and subjected them to internal and external validation.

RESULTS

The CIFs of EAC-specific survival at 1, 3, and 5 years after diagnosis were 60.9%, 37.1%, and 31.3%, respectively. Predictors for cancer-specific mortality for EAC comprised tumor grade, tumor extension, the involvement of lymph nodes, distant metastasis, surgery of primary site, insurance recode, and marital status. For overall mortality, it also included the predictor of age at diagnosis. The nomograms were well-calibrated and had good discriminative ability with concordance indexes (c-indexes) of 0.733, 0.728, and 0.728 for 1-, 3- and 5-year prognosis prediction of EAC-specific mortality respectively, and 0.726, 0.720, 0.719 for 1-, 3-, and 5-year prognosis prediction of overall mortality respectively.

CONCLUSIONS

We proposed and validated the effective and convenient nomograms to predict cancer-specific mortality and the overall mortality for patients with EAC, which only require the basic information available in clinical practice.

摘要

背景

据报道,许多因素与食管腺癌(EAC)患者的预后相关,但目前针对临床医生估算个体死亡率的可靠且简便的工具却很少。本研究旨在评估EAC患者癌症特异性死亡的概率,并构建列线图以预测EAC患者的长期癌症特异性死亡率和总死亡率。

方法

2004年至2013年间,从监测、流行病学和最终结果(SEER)数据库中识别出总共20623例患者,并将其随机分为训练队列(N = 14436)和验证队列(N = 6187)。在诊断后的第1、3和5年评估EAC特异性死亡和其他原因的累积发病率函数(CIF)。我们整合了显著的预后因素来构建列线图,并对其进行内部和外部验证。

结果

诊断后1、3和5年EAC特异性生存的CIF分别为60.9%、37.1%和31.3%。EAC癌症特异性死亡率的预测因素包括肿瘤分级、肿瘤扩展、淋巴结受累、远处转移、原发部位手术、保险编码和婚姻状况。对于总死亡率,它还包括诊断时年龄这一预测因素。列线图校准良好,具有良好的辨别能力,EAC特异性死亡率1年、3年和5年预后预测的一致性指数(c指数)分别为0.733、0.728和0.728,总死亡率1年、3年和5年预后预测的c指数分别为0.726、0.720和0.719。

结论

我们提出并验证了有效且便捷的列线图,用于预测EAC患者的癌症特异性死亡率和总死亡率,这些列线图仅需要临床实践中可用的基本信息。

相似文献

引用本文的文献

9
A Predicting Nomogram for Mortality in Patients With COVID-19.用于预测 COVID-19 患者死亡率的列线图模型。
Front Public Health. 2020 Aug 11;8:461. doi: 10.3389/fpubh.2020.00461. eCollection 2020.

本文引用的文献

2
Survival Disparities by Race and Ethnicity in Early Esophageal Cancer.早期食管癌中种族和民族的生存差异。
Dig Dis Sci. 2018 Nov;63(11):2880-2888. doi: 10.1007/s10620-018-5238-6. Epub 2018 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验