Suppr超能文献

食管腺癌预后预测的列线图:现状与挑战

Nomograms for prognosis prediction in esophageal adenocarcinoma: realities and challenges.

作者信息

Zheng Hong, Wu Rong, Zhang Guosen, Wang Qiang, Li Qiongshan, Zhang Lu, Li Huimin, Wang Yange, Xie Longxiang, Guo Xiangqian

机构信息

School of Basic Medical Sciences, Henan University, Kaifeng, China.

Institute of Biomedical Informatics, Henan University, Kaifeng, China.

出版信息

Clin Transl Oncol. 2025 Feb;27(2):449-457. doi: 10.1007/s12094-024-03589-z. Epub 2024 Jul 31.

Abstract

Prognostic assessment is of great significance for individualized treatment and care of cancer patients. Although the TNM staging system is widely used as the primary prognostic classifier for solid tumors in clinical practice, the complexity of tumor occurrence and development requires more personalized probability prediction models than an ordered staging system. By integrating clinical, pathological, and molecular factors into digital models through LASSO and Cox regression, a nomogram could provide more accurate personalized survival estimates, helping clinicians and patients develop more appropriate treatment and care plans. Esophageal adenocarcinoma (EAC) is a common pathological subtype of esophageal cancer with poor prognosis. Here, we screened and comprehensively reviewed the studies on EAC nomograms for prognostic prediction, focusing on performance evaluation and potential prognostic factors affecting survival. By analyzing the strengths and limitations of the existing nomograms, this study aims to provide assistance in constructing high-quality prognostic models for EAC patients.

摘要

预后评估对于癌症患者的个体化治疗和护理具有重要意义。尽管TNM分期系统在临床实践中被广泛用作实体瘤的主要预后分类器,但肿瘤发生和发展的复杂性需要比有序分期系统更个性化的概率预测模型。通过LASSO和Cox回归将临床、病理和分子因素整合到数字模型中,列线图可以提供更准确的个性化生存估计,帮助临床医生和患者制定更合适的治疗和护理计划。食管腺癌(EAC)是食管癌的一种常见病理亚型,预后较差。在此,我们筛选并全面回顾了关于EAC列线图用于预后预测的研究,重点关注性能评估和影响生存的潜在预后因素。通过分析现有列线图的优势和局限性,本研究旨在为构建高质量的EAC患者预后模型提供帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验