Suppr超能文献

在多医院社区实践解剖病理实验室中利用缺失数据进行过程变异检测

Process Variation Detection using Missing Data in a Multihospital Community Practice Anatomic Pathology Laboratory.

作者信息

Galliano Gretchen E

机构信息

Department of Pathology and Laboratory Medicine, Ochsner Health System, New Orleans, LA, USA.

出版信息

J Pathol Inform. 2019 Aug 1;10:25. doi: 10.4103/jpi.jpi_18_19. eCollection 2019.

Abstract

OBJECTIVES

Barcode-driven workflows reduce patient identification errors. Missing process timestamp data frequently confound our health system's pending lists and appear as actions left undone. Anecdotally, it was noted that missing data could be found when there is procedure noncompliance. This project was developed to determine if missing timestamp data in the histology barcode drive workflow correlated with other process variations, procedure noncompliance, or is an indicator of workflows needing focus for improvement projects.

MATERIALS AND METHODS

Data extracts of timestamp data from January 1, 2018, to December 15, 2018 for the major histology process steps were analyzed for missing data. Case level analysis to determine the presence or absence of expected barcoding events was performed on 1031 surgical pathology cases to determine the cause of the missing data and determine if additional data variations or procedure noncompliance events were present. The data variations were classified according to a scheme defined in the study.

RESULTS

Of 70,085, there were 7218 cases (10.3%) with missing process timestamp data. Missing histology process step data was associated with other additional data variations in case-level deep dives ( < 0.0001). Of the cases missing timestamp data in the initial review, 18.4% of the cases had no identifiable cause for the missing data (all expected events took place in the case-level deep dive).

CONCLUSIONS

Operationally, valuable information can be obtained by reviewing the types and causes of missing data in the anatomic pathology laboratory information system, but only in conjunction with user input and feedback.

摘要

目的

条形码驱动的工作流程可减少患者识别错误。缺失的流程时间戳数据常常使我们卫生系统的待办事项清单混乱,表现为未完成的操作。据传闻,有人指出在出现程序不合规时会发现缺失的数据。开展该项目是为了确定组织学条形码驱动工作流程中缺失的时间戳数据是否与其他流程变化、程序不合规相关,或者是否是需要在改进项目中重点关注的工作流程指标。

材料与方法

分析了2018年1月1日至2018年12月15日主要组织学流程步骤的时间戳数据提取物中的缺失数据。对1031例外科病理病例进行病例层面分析,以确定预期条形码事件的存在与否,从而确定缺失数据的原因,并确定是否存在其他数据变化或程序不合规事件。数据变化根据研究中定义的方案进行分类。

结果

在70,085例中,有7218例(10.3%)存在流程时间戳数据缺失。在病例层面的深入分析中,组织学流程步骤数据缺失与其他额外的数据变化相关(<0.0001)。在初始审查中时间戳数据缺失的病例中,18.4%的病例缺失数据的原因无法确定(在病例层面的深入分析中所有预期事件均已发生)。

结论

在操作上,通过审查解剖病理实验室信息系统中缺失数据的类型和原因可以获得有价值的信息,但前提是要结合用户的输入和反馈。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5599/6686573/6e1327b956cb/JPI-10-25-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验