Suppr超能文献

一种新的未培养细菌家族,涉及在沿海盐沼沉积物中普遍存在的渗透调节剂甘氨酸甜菜碱的产甲烷作用。

A new family of uncultivated bacteria involved in methanogenesis from the ubiquitous osmolyte glycine betaine in coastal saltmarsh sediments.

机构信息

School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.

Microbial Biogeochemistry, RA Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, 15374, Müncheberg, Germany.

出版信息

Microbiome. 2019 Aug 27;7(1):120. doi: 10.1186/s40168-019-0732-4.

Abstract

BACKGROUND

Coastal environments are dynamic and rapidly changing. Living organisms in coastal environments are known to synthesise large quantities of organic osmolytes, which they use to cope with osmotic stresses. The organic osmolyte glycine betaine (GBT) is ubiquitously found in marine biota from prokaryotic Bacteria and Archaea to coastal plants, marine protozoa, and mammals. In intertidal coastal sediment, GBT represents an important precursor of natural methane emissions and as much as 90% of total methane production in these ecosystems can be originated from methanogenesis from GBT and its intermediate trimethylamine through microbial metabolism.

RESULTS

We set out to uncover the microorganisms responsible for methanogenesis from GBT using stable isotope labelling and metagenomics. This led to the recovery of a near-complete genome (2.3 Mbp) of a novel clostridial bacterium involved in anaerobic GBT degradation. Phylogenetic analyses of 16S rRNA gene, functional marker genes, and comparative genomics analyses all support the establishment of a novel family Candidatus 'Betainaceae' fam. nov. in Clostridiales and its role in GBT metabolism.

CONCLUSIONS

Our comparative genomes and metagenomics analyses suggest that this bacterium is widely distributed in coastal salt marshes, marine sediments, and deep subsurface sediments, suggesting a key role of anaerobic GBT metabolism by this clostridial bacterium in these ecosystems.

摘要

背景

沿海环境是动态且快速变化的。已知生活在沿海环境中的生物体能够合成大量的有机渗透物,以应对渗透压力。有机渗透物甘氨酸甜菜碱(GBT)广泛存在于海洋生物中,从原核细菌和古菌到沿海植物、海洋原生动物和哺乳动物。在潮间带沿海沉积物中,GBT 是自然甲烷排放的重要前体,这些生态系统中多达 90%的总甲烷产量可源自 GBT 及其中间产物三甲胺通过微生物代谢的甲烷生成。

结果

我们使用稳定同位素标记和宏基因组学来揭示负责 GBT 甲烷生成的微生物。这导致了一种新型梭菌的近乎完整基因组(2.3 Mbp)的恢复,该菌参与了 GBT 的厌氧降解。16S rRNA 基因、功能标记基因和比较基因组学分析的系统发育分析均支持在梭菌目中建立一个新的 Candidatus 'Betainaceae' 科,nov.,并在 GBT 代谢中发挥作用。

结论

我们的比较基因组学和宏基因组学分析表明,这种细菌广泛分布于沿海盐沼、海洋沉积物和深部地下沉积物中,表明这种梭菌在这些生态系统中通过厌氧 GBT 代谢发挥着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0fad/6716910/f7fb4deb7c17/40168_2019_732_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验