Suppr超能文献

有氧细菌甲烷合成。

Aerobic bacterial methane synthesis.

机构信息

Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT 59717.

Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717.

出版信息

Proc Natl Acad Sci U S A. 2021 Jul 6;118(27). doi: 10.1073/pnas.2019229118.

Abstract

Reports of biogenic methane (CH) synthesis associated with a range of organisms have steadily accumulated in the literature. This has not happened without controversy and in most cases the process is poorly understood at the gene and enzyme levels. In marine and freshwater environments, CH supersaturation of oxic surface waters has been termed the "methane paradox" because biological CH synthesis is viewed to be a strictly anaerobic process carried out by O-sensitive methanogens. Interest in this phenomenon has surged within the past decade because of the importance of understanding sources and sinks of this potent greenhouse gas. In our work on Yellowstone Lake in Yellowstone National Park, we demonstrate microbiological conversion of methylamine to CH and isolate and characterize an sp. capable of this activity. Furthermore, we identify and clone a gene critical to this process (encodes pyridoxylamine phosphate-dependent aspartate aminotransferase) and demonstrate that this property can be transferred to with this gene and will occur as a purified enzyme. This previously unrecognized process sheds light on environmental cycling of CH, suggesting that O-insensitive, ecologically relevant aerobic CH synthesis is likely of widespread distribution in the environment and should be considered in CH modeling efforts.

摘要

有关一系列生物体与生物成因甲烷(CH)合成相关的报告在文献中不断积累。这并非没有争议,而且在大多数情况下,该过程在基因和酶水平上都知之甚少。在海洋和淡水环境中,好氧表层水的 CH 过饱和现象被称为“甲烷悖论”,因为生物 CH 合成被认为是严格的厌氧过程,由对 O 敏感的产甲烷菌进行。由于了解这种强温室气体的来源和汇对于理解其重要性,过去十年中人们对这一现象的兴趣大增。在我们对黄石国家公园黄石湖的研究中,我们证明了微生物将甲胺转化为 CH,并分离和鉴定了一种能够进行这种活动的 sp.。此外,我们鉴定并克隆了一个对该过程至关重要的基因(编码吡哆醛磷酸依赖的天冬氨酸转氨酶),并证明该特性可以通过该基因转移到 ,并作为纯化酶发生。这一先前未被认识的过程揭示了 CH 的环境循环,表明 O 不敏感、生态相关的有氧 CH 合成可能在环境中广泛分布,并且应该在 CH 建模工作中考虑。

相似文献

1
Aerobic bacterial methane synthesis.有氧细菌甲烷合成。
Proc Natl Acad Sci U S A. 2021 Jul 6;118(27). doi: 10.1073/pnas.2019229118.
5
Aerobic methane synthesis and dynamics in a river water environment.河流水环境中的好氧甲烷合成与动态变化
Limnol Oceanogr. 2023 Aug;68(8):1762-1774. doi: 10.1002/lno.12383. Epub 2023 Jun 14.

引用本文的文献

9
Aerobic methane synthesis and dynamics in a river water environment.河流水环境中的好氧甲烷合成与动态变化
Limnol Oceanogr. 2023 Aug;68(8):1762-1774. doi: 10.1002/lno.12383. Epub 2023 Jun 14.

本文引用的文献

1
Aquatic and terrestrial cyanobacteria produce methane.水生和陆生蓝藻产生甲烷。
Sci Adv. 2020 Jan 15;6(3):eaax5343. doi: 10.1126/sciadv.aax5343. eCollection 2020 Jan.
2
High Spatiotemporal Dynamics of Methane Production and Emission in Oxic Surface Water.好氧地表水产甲烷和排放的高时空动态。
Environ Sci Technol. 2020 Feb 4;54(3):1451-1463. doi: 10.1021/acs.est.9b03182. Epub 2020 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验