O'Quigley John
Laboratoire de statistique théorique et appliquée, université Pierre-et-Marie-Curie (Paris-6), 4, place Jussieu, 75252 Paris cedex 05, France.
C R Math. 2013 May;351(9-10):401-404. doi: 10.1016/j.crma.2013.01.015. Epub 2013 Jun 18.
The statistical problem of bridging is closely associated with the problem of heterogeneity in dose-finding studies. There are some distinctive features in the case of bridging which need to be considered if efficient estimation of the maximum tolerated dose (MTD) is to be accomplished. The case of two distinct populations is considered. Extensions to several populations are, at least in principle, straightforward although, in practice, likely to be awkward and infrequently encountered. The goal is to make efficient use of information gained in one study in the context of a second study. Since working models are typically misspecified it is not possible to just add a further parameter to deal with an added source of variability.
桥接的统计学问题与剂量探索研究中的异质性问题密切相关。在桥接的情况下存在一些独特特征,如果要有效地估计最大耐受剂量(MTD),就需要加以考虑。本文考虑两个不同群体的情况。至少在原则上,扩展到多个群体是直接明了的,不过在实际中可能会很棘手且很少遇到。目标是在第二项研究的背景下有效利用在第一项研究中获得的信息。由于工作模型通常设定错误,所以不可能仅仅增加一个参数来处理额外的变异来源。