Suppr超能文献

贝叶斯半参数设计(BSD)用于具有多个层的自适应剂量发现。

Bayesian Semi-parametric Design (BSD) for adaptive dose-finding with multiple strata.

机构信息

Department of Biostatistics, Yale University , New Haven, CT, USA.

Statistical and Quantitative Sciences, Takeda Pharmaceuticals , Cambridge, MA, USA.

出版信息

J Biopharm Stat. 2020 Sep 2;30(5):806-820. doi: 10.1080/10543406.2020.1730870. Epub 2020 Mar 4.

Abstract

In the era of precision medicine, it is of increasing interest to consider multiple strata (e.g. indications, regions, or subgroups) within a single oncology dose-finding study when identifying the maximum tolerated dose (MTD). We propose two Bayesian semi-parametric designs (BSD) for dose-finding with multiple strata to allow for both adaptively dosing patients based on various toxicity profiles and efficient identification of the MTD for each stratum. We develop non-parametric priors based on the Dirichlet process to allow for a flexible prior distribution and negate the need for a pre-specified exchangeability parameter. The two BSD models are built under different prior beliefs of strata heterogeneity and allow for appropriate borrowing of information across similar strata. Simulation studies are performed to evaluate the BSD model performance by comparing it with existing methods, including the fully stratified, exchangeability, and exchangeability-non-exchangeability models. In general, our BSD models outperform the competing methods in correctly identifying the MTD for different strata and necessitate a smaller sample size to determine the MTD. The BSD models are robust to various heterogeneity assumptions and can be easily extended to other binary and time to event endpoints.

摘要

在精准医学时代,当确定最大耐受剂量 (MTD) 时,考虑在单个肿瘤剂量发现研究中对多个层次(例如,适应证、地区或亚组)进行分层越来越受到关注。我们提出了两种用于多分层剂量发现的贝叶斯半参数设计 (BSD),以便能够根据各种毒性特征对患者进行适应性给药,并有效地确定每个分层的 MTD。我们基于狄利克雷过程开发了非参数先验,以允许灵活的先验分布,并消除对预定义可交换参数的需求。这两个 BSD 模型是基于不同的分层异质性先验信念构建的,并允许在相似的分层之间进行适当的信息借用。通过与现有方法(包括完全分层、可交换和可交换-不可交换模型)进行比较,对 BSD 模型性能进行了模拟研究。总体而言,我们的 BSD 模型在正确识别不同分层的 MTD 方面优于竞争方法,并且需要更小的样本量来确定 MTD。BSD 模型对各种异质性假设具有稳健性,并且可以轻松扩展到其他二项和时间到事件终点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验