Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA.
Small. 2019 Nov;15(47):e1902058. doi: 10.1002/smll.201902058. Epub 2019 Aug 30.
This study establishes a novel microfluidic platform for rapid encapsulation of cells at high densities in photocrosslinkable microspherical hydrogels including poly(ethylene glycol)-diacrylate, poly(ethylene glycol)-fibrinogen, and gelatin methacrylate. Cell-laden hydrogel microspheres are advantageous for many applications from drug screening to regenerative medicine. Employing microfluidic systems is considered the most efficient method for scale-up production of uniform microspheres. However, existing platforms have been constrained by traditional microfabrication techniques for device fabrication, restricting microsphere diameter to below 200 µm and making iterative design changes time-consuming and costly. Using a new molding technique, the microfluidic device employs a modified T-junction design with readily adjustable channel sizes, enabling production of highly uniform microspheres with cell densities (10-60 million cells mL ) and a wide range of diameters (300-1100 µm), which are critical for realizing downstream applications, through rapid photocrosslinking (≈1 s per microsphere). Multiple cell types are encapsulated at rates of up to 1 million cells per min, are evenly distributed throughout the microspheres, and maintain high viability and appropriate cellular activities in long-term culture. This microfluidic encapsulation platform is a valuable and readily adoptable tool for numerous applications, including supporting injectable cell therapy, bioreactor-based cell expansion and differentiation, and high throughput tissue sphere-based drug testing assays.
本研究建立了一种新颖的微流控平台,用于在包括聚乙二醇二丙烯酸酯、聚乙二醇纤维蛋白原和明胶甲基丙烯酰胺在内的光交联微球形水凝胶中快速封装高浓度细胞。载细胞水凝胶微球在药物筛选到再生医学等许多应用中具有优势。采用微流控系统被认为是大规模生产均匀微球的最有效方法。然而,现有的平台受到用于器件制造的传统微加工技术的限制,限制了微球直径低于 200 µm,并使迭代设计更改既耗时又昂贵。使用新的成型技术,微流控器件采用经过改进的 T 型接头设计,具有可调节的通道尺寸,能够通过快速光交联(≈每个微球 1 秒)生产具有高细胞密度(10-6000 万细胞/mL)和广泛直径范围(300-1100 µm)的高度均匀的微球,这对于实现下游应用至关重要。多达 100 万个细胞/分钟的速度封装多种细胞类型,均匀分布在微球中,并在长期培养中保持高活力和适当的细胞活性。这种微流控封装平台是一种有价值且易于采用的工具,适用于许多应用,包括支持可注射细胞治疗、基于生物反应器的细胞扩增和分化以及高通量基于组织球的药物测试分析。