Suppr超能文献

基于来源归因的 PM2.5 与心肺急诊就诊相关性研究:考虑来源贡献不确定性。

Source-Apportioned PM2.5 and Cardiorespiratory Emergency Department Visits: Accounting for Source Contribution Uncertainty.

机构信息

From the Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA.

School of Community Health Sciences, University of Nevada Reno, Reno, NV.

出版信息

Epidemiology. 2019 Nov;30(6):789-798. doi: 10.1097/EDE.0000000000001089.

Abstract

BACKGROUND

Despite evidence suggesting that air pollution-related health effects differ by emissions source, epidemiologic studies on fine particulate matter (PM2.5) infrequently differentiate between particles from different sources. Those that do rarely account for the uncertainty of source apportionment methods.

METHODS

For each day in a 12-year period (1998-2010) in Atlanta, GA, we estimated daily PM2.5 source contributions from a Bayesian ensemble model that combined four source apportionment methods including chemical transport and receptor-based models. We fit Poisson generalized linear models to estimate associations between source-specific PM2.5 concentrations and cardiorespiratory emergency department visits (n = 1,598,117). We propagated uncertainty in the source contribution estimates through analyses using multiple imputation.

RESULTS

Respiratory emergency department visits were positively associated with biomass burning and secondary organic carbon. For a 1 µg/m increase in PM2.5 from biomass burning during the past 3 days, the rate of visits for all respiratory outcomes increased by 0.4% (95% CI 0.0%, 0.7%). There was less evidence for associations between PM2.5 sources and cardiovascular outcomes, with the exception of ischemic stroke, which was positively associated with most PM2.5 sources. Accounting for the uncertainty of source apportionment estimates resulted, on average, in an 18% increase in the standard error for rate ratio estimates for all respiratory and cardiovascular emergency department visits, but inflation varied across specific sources and outcomes, ranging from 2% to 39%.

CONCLUSIONS

This study provides evidence of associations between PM2.5 sources and some cardiorespiratory outcomes and quantifies the impact of accounting for variability in source apportionment approaches.

摘要

背景

尽管有证据表明,与空气污染有关的健康影响因排放源而异,但关于细颗粒物(PM2.5)的流行病学研究很少区分不同来源的颗粒。那些这样做的研究很少考虑源分配方法的不确定性。

方法

在佐治亚州亚特兰大市的 12 年期间(1998-2010 年),我们使用贝叶斯集合模型估计了每天的 PM2.5 源贡献,该模型结合了包括化学输送和受体模型在内的四种源分配方法。我们使用泊松广义线性模型来估计特定源 PM2.5 浓度与心肺急救部门就诊(n = 1,598,117)之间的关联。我们通过使用多重插补进行分析来传播源贡献估计的不确定性。

结果

呼吸道急诊就诊与生物质燃烧和二次有机碳呈正相关。在过去 3 天中,PM2.5 中生物质燃烧每增加 1 µg/m,所有呼吸道疾病的就诊率增加 0.4%(95%CI 0.0%,0.7%)。PM2.5 源与心血管疾病结果之间的关联证据较少,除了缺血性中风,它与大多数 PM2.5 源呈正相关。平均而言,考虑源分配估计的不确定性会导致所有呼吸道和心血管急救就诊的率比估计的标准误差增加 18%,但通胀因特定源和结果而异,范围从 2%到 39%。

结论

本研究提供了 PM2.5 源与某些心肺疾病结果之间关联的证据,并量化了考虑源分配方法变化的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b67f/6768727/378fe0952e8a/nihms-1535947-f0001.jpg

相似文献

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验