Suppr超能文献

微管蛋白亚基间和亚基内界面的力学性质及其对微管动态不稳定性的影响。

Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability.

机构信息

Department of Biology, Lomonosov Moscow State University, Moscow, Russia.

Moscow Institute of Physics and Technology, Dolgoprudny, Russia.

出版信息

PLoS Comput Biol. 2019 Aug 30;15(8):e1007327. doi: 10.1371/journal.pcbi.1007327. eCollection 2019 Aug.

Abstract

Thirteen tubulin protofilaments, made of αβ-tubulin heterodimers, interact laterally to produce cytoskeletal microtubules. Microtubules exhibit the striking property of dynamic instability, manifested in their intermittent growth and shrinkage at both ends. This behavior is key to many cellular processes, such as cell division, migration, maintenance of cell shape, etc. Although assembly and disassembly of microtubules is known to be linked to hydrolysis of a guanosine triphosphate molecule in the pocket of β-tubulin, detailed mechanistic understanding of corresponding conformational changes is still lacking. Here we take advantage of the recent generation of in-microtubule structures of tubulin to examine the properties of protofilaments, which serve as important microtubule assembly and disassembly intermediates. We find that initially straight tubulin protofilaments, relax to similar non-radially curved and slightly twisted conformations. Our analysis further suggests that guanosine triphosphate hydrolysis primarily affects the flexibility and conformation of the inter-dimer interface, without a strong impact on the shape or flexibility of αβ-heterodimer. Inter-dimer interfaces are significantly more flexible compared to intra-dimer interfaces. We argue that such a difference in flexibility could be key for distinct stability of the plus and minus microtubule ends. The higher flexibility of the inter-dimer interface may have implications for development of pulling force by curving tubulin protofilaments during microtubule disassembly, a process of major importance for chromosome motions in mitosis.

摘要

13 个微管蛋白原纤维由αβ-微管蛋白异二聚体组成,侧向相互作用产生细胞骨架微管。微管表现出动态不稳定性的显著特性,表现在其在两端的间歇性生长和收缩。这种行为是许多细胞过程的关键,如细胞分裂、迁移、维持细胞形状等。尽管微管的组装和拆卸已知与β-微管口袋中鸟苷三磷酸分子的水解有关,但对相应构象变化的详细机制理解仍然缺乏。在这里,我们利用最近生成的微管内微管蛋白结构来检查原纤维的性质,原纤维作为重要的微管组装和拆卸中间体。我们发现最初是直的微管蛋白原纤维,松弛到类似的非径向弯曲和略微扭曲的构象。我们的分析进一步表明,鸟苷三磷酸水解主要影响二聚体界面的柔韧性和构象,而对αβ-异二聚体的形状或柔韧性没有强烈影响。二聚体界面的柔韧性明显高于二聚体内部界面。我们认为,这种柔韧性的差异可能是正微管和负微管末端稳定性不同的关键。二聚体界面的柔韧性较高可能对微管组装过程中弯曲微管蛋白原纤维产生拉力有影响,这一过程对于有丝分裂中染色体运动至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce5c/6742422/82879c339a5d/pcbi.1007327.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验