Division of Psychology, School of Medicine, University of Tasmania, Hobart, Tasmania, Australia.
Department of Physics and Astronomy & Department of Mathematics, Quantitative Systems Biology Center, Vanderbilt University, Nashville, TN, USA.
Behav Res Methods. 2019 Dec;51(6):2777-2799. doi: 10.3758/s13428-018-1153-1.
Probability density approximation (PDA) is a nonparametric method of calculating probability densities. When integrated into Bayesian estimation, it allows researchers to fit psychological processes for which analytic probability functions are unavailable, significantly expanding the scope of theories that can be quantitatively tested. PDA is, however, computationally intensive, requiring large numbers of Monte Carlo simulations in order to attain good precision. We introduce Parallel PDA (pPDA), a highly efficient implementation of this method utilizing the Armadillo C++ and CUDA C libraries to conduct millions of model simulations simultaneously in graphics processing units (GPUs). This approach provides a practical solution for rapidly approximating probability densities with high precision. In addition to demonstrating this method, we fit a piecewise linear ballistic accumulator model (Holmes, Trueblood, & Heathcote, 2016) to empirical data. Finally, we conducted simulation studies to investigate various issues associated with PDA and provide guidelines for pPDA applications to other complex cognitive models.
概率密度逼近(PDA)是一种计算概率密度的非参数方法。当它被整合到贝叶斯估计中时,它允许研究人员拟合那些没有解析概率函数的心理过程,从而极大地扩展了可以进行定量测试的理论范围。然而,PDA 的计算量很大,需要进行大量的蒙特卡罗模拟才能达到良好的精度。我们引入了并行 PDA(pPDA),这是一种利用 Armadillo C++和 CUDA C 库的高效实现方法,可以在图形处理单元(GPU)上同时进行数百万次模型模拟。这种方法为快速高精度地逼近概率密度提供了一种实用的解决方案。除了演示这种方法,我们还将分段线性弹道累积器模型(Holmes、Trueblood 和 Heathcote,2016)拟合到经验数据上。最后,我们进行了模拟研究,以调查与 PDA 相关的各种问题,并为 pPDA 在其他复杂认知模型中的应用提供指导。