School of Psychology, University of Newcastle, Callaghan, NSW, 2308, Australia.
Behav Res Methods. 2018 Apr;50(2):589-603. doi: 10.3758/s13428-017-0887-5.
Evidence accumulation models of decision-making have led to advances in several different areas of psychology. These models provide a way to integrate response time and accuracy data, and to describe performance in terms of latent cognitive processes. Testing important psychological hypotheses using cognitive models requires a method to make inferences about different versions of the models which assume different parameters to cause observed effects. The task of model-based inference using noisy data is difficult, and has proven especially problematic with current model selection methods based on parameter estimation. We provide a method for computing Bayes factors through Monte-Carlo integration for the linear ballistic accumulator (LBA; Brown and Heathcote, 2008), a widely used evidence accumulation model. Bayes factors are used frequently for inference with simpler statistical models, and they do not require parameter estimation. In order to overcome the computational burden of estimating Bayes factors via brute force integration, we exploit general purpose graphical processing units; we provide free code for this. This approach allows estimation of Bayes factors via Monte-Carlo integration within a practical time frame. We demonstrate the method using both simulated and real data. We investigate the stability of the Monte-Carlo approximation, and the LBA's inferential properties, in simulation studies.
证据积累模型在心理学的几个不同领域取得了进展。这些模型提供了一种方法,可以整合反应时间和准确性数据,并根据潜在的认知过程来描述性能。使用认知模型测试重要的心理学假设需要一种方法来对假设不同参数导致观察到的效果的模型的不同版本进行推断。使用嘈杂数据进行基于模型的推断是困难的,并且已经证明,基于参数估计的当前模型选择方法尤其存在问题。我们提供了一种通过蒙特卡罗积分计算线性弹道累加器(LBA;Brown 和 Heathcote,2008)的贝叶斯因子的方法,LBA 是一种广泛使用的证据积累模型。贝叶斯因子常用于更简单的统计模型的推断,并且它们不需要参数估计。为了克服通过暴力积分估计贝叶斯因子的计算负担,我们利用通用图形处理单元;我们为此提供了免费代码。这种方法允许在实际时间范围内通过蒙特卡罗积分估计贝叶斯因子。我们使用模拟和真实数据演示了该方法。我们在模拟研究中调查了蒙特卡罗逼近的稳定性和 LBA 的推断特性。