Suppr超能文献

测序技术与分析:我们从何而来,又将走向何方?

Sequencing Technologies and Analyses: Where Have We Been and Where Are We Going?

作者信息

Bansal Vikas, Boucher Christina

机构信息

Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, USA.

Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA.

出版信息

iScience. 2019 Aug 30;18:37-41. doi: 10.1016/j.isci.2019.06.035. Epub 2019 Aug 15.

Abstract

A wave of technologies transformed sequencing over a decade ago into the high-throughput era, demanding research in new computational methods to analyze these data. The applications of these sequencing technologies have continuously expanded since then. The RECOMB Satellite Workshop on Massively Parallel Sequencing (RECOMB-Seq) meeting, established in 2011, brings together leading researchers in computational genomics and genomic biology to discuss emerging frontiers in algorithm development for massively parallel sequencing data. The ninth edition of this workshop was held in Washington, DC, in George Washington University on May 3 and 4, 2019. There was an exploration of several traditional topics in sequence analysis, including genome assembly, sequence alignment, and data compression, and development of methods for new sequencing technologies, including linked reads and single-molecule long-read sequencing. Here we revisit these topics and discuss the current status and perspectives of sequencing technologies and analyses.

摘要

十多年前,一波技术浪潮将测序带入了高通量时代,这就需要研究新的计算方法来分析这些数据。从那时起,这些测序技术的应用不断扩展。2011年设立的RECOMB大规模平行测序卫星研讨会(RECOMB-Seq)会议,汇聚了计算基因组学和基因组生物学领域的顶尖研究人员,以讨论大规模平行测序数据算法开发的新兴前沿领域。该研讨会的第九版于2019年5月3日至4日在华盛顿特区的乔治华盛顿大学举行。会议探讨了序列分析中的几个传统主题,包括基因组组装、序列比对和数据压缩,以及新测序技术(包括连接 reads 和单分子长读长测序)方法的开发。在此,我们重新审视这些主题,并讨论测序技术与分析的现状和前景。

相似文献

2
Algorithms meet sequencing technologies - 10th edition of the RECOMB-Seq workshop.算法与测序技术——RECOMB-Seq研讨会第10版
iScience. 2020 Dec 17;24(1):101956. doi: 10.1016/j.isci.2020.101956. eCollection 2021 Jan 22.

引用本文的文献

本文引用的文献

3
Sparse Binary Relation Representations for Genome Graph Annotation.用于基因组图注释的稀疏二元关系表示
J Comput Biol. 2020 Apr;27(4):626-639. doi: 10.1089/cmb.2019.0324. Epub 2019 Dec 20.
4
Improved representation of sequence bloom trees.序列 Bloom 树的表示方法改进。
Bioinformatics. 2020 Feb 1;36(3):721-727. doi: 10.1093/bioinformatics/btz662.
10
SeqOthello: querying RNA-seq experiments at scale.SeqOthello:大规模查询 RNA-seq 实验。
Genome Biol. 2018 Oct 19;19(1):167. doi: 10.1186/s13059-018-1535-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验