Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Microsoft Research, China.
Neural Netw. 2019 Nov;119:214-221. doi: 10.1016/j.neunet.2019.07.010. Epub 2019 Aug 18.
In image classification, it is often expensive and time-consuming to acquire sufficient labels. To solve this problem, domain adaptation often provides an attractive option given a large amount of labeled data from a similar nature but different domains. Existing approaches mainly align the distributions of representations extracted by a single structure and the representations may only contain partial information, e.g., only contain part of the saturation, brightness, and hue information. Along this line, we propose Multi-Representation Adaptation which can dramatically improve the classification accuracy for cross-domain image classification and specially aims to align the distributions of multiple representations extracted by a hybrid structure named Inception Adaptation Module (IAM). Based on this, we present Multi-Representation Adaptation Network (MRAN) to accomplish the cross-domain image classification task via multi-representation alignment which can capture the information from different aspects. In addition, we extend Maximum Mean Discrepancy (MMD) to compute the adaptation loss. Our approach can be easily implemented by extending most feed-forward models with IAM, and the network can be trained efficiently via back-propagation. Experiments conducted on three benchmark image datasets demonstrate the effectiveness of MRAN.
在图像分类中,获取足够的标签通常既昂贵又耗时。为了解决这个问题,域自适应通常提供了一个有吸引力的选择,因为有大量来自相似性质但不同领域的标记数据。现有的方法主要对齐由单个结构提取的表示的分布,而表示可能只包含部分信息,例如,只包含饱和度、亮度和色调信息的一部分。沿着这条线,我们提出了多表示自适应,它可以显著提高跨域图像分类的分类精度,特别是旨在对齐由名为 Inception 自适应模块 (IAM) 的混合结构提取的多个表示的分布。基于此,我们提出了多表示自适应网络 (MRAN),通过多表示对齐来完成跨域图像分类任务,从而可以从不同方面捕获信息。此外,我们扩展最大均值差异 (MMD) 来计算自适应损失。我们的方法可以通过在大多数前馈模型中扩展 IAM 来轻松实现,并且可以通过反向传播来有效地训练网络。在三个基准图像数据集上进行的实验证明了 MRAN 的有效性。