Suppr超能文献

血流导向装置的部署:18 例临床病例中缩短的预测和模拟验证。

Deployment of flow diverter devices: prediction of foreshortening and validation of the simulation in 18 clinical cases.

机构信息

Department of Neuroradiology, Otto-von-Guericke University Magdeburg, Leipziger Straße 44, 39112, Magdeburg, Germany.

出版信息

Neuroradiology. 2019 Nov;61(11):1319-1326. doi: 10.1007/s00234-019-02287-w. Epub 2019 Aug 31.

Abstract

PURPOSE

Flow diverter (FD) devices show severe shortening during deployment in dependency of the vessel geometry. Valid information regarding the geometry of the targeted vessel is therefore mandatory for correct device selection, and to avoid complications. But the geometry of diseased tortuous intracranial vessels cannot be measured accurately with standard methods. The goal of this study is to prove the accuracy of a novel virtual stenting method in prediction of the behavior of a FD in an individual vessel geometry.

METHODS

We applied a virtual stenting method on angiographic 3D imaging data of the specific vasculature of patients, who underwent FD treatment. The planning tool analyzes the local vessel morphology and deploys the FD virtually. We measured in 18 cases the difference between simulated FD length and real FD length after treatment in a landmark-based registration of pre-/post-interventional 3D angiographic datasets.

RESULTS

The mean value of length deviation of the virtual FD was 2.2 mm (SD ± 1.9 mm) equaling 9.5% (SD ± 8.2%). Underestimated cases present lower deviations compared with overestimated FDs. Flow diverter cases with a nominal device length of 20 mm had the highest prediction accuracy.

CONCLUSION

The results suggest that the virtual stenting method used in this study is capable of predicting FD length with a clinically sufficient accuracy in advance and could therefore be a helpful tool in intervention planning. Imaging data of high quality are mandatory, while processing and manipulation of the FD during the intervention may impact the accuracy.

摘要

目的

血流导向装置(FD)在部署过程中会根据血管几何形状严重缩短。因此,为了正确选择设备并避免并发症,需要有关于目标血管几何形状的有效信息。但是,用标准方法无法准确测量病变迂曲颅内血管的几何形状。本研究的目的是证明一种新的虚拟支架成形术在预测 FD 在个体血管几何形状中的行为方面的准确性。

方法

我们将虚拟支架成形术应用于接受 FD 治疗的患者特定血管的血管造影 3D 成像数据。该规划工具分析局部血管形态并虚拟部署 FD。我们在 18 例患者中进行了测量,在术前/术后 3D 血管造影数据集的基于标志的配准中,以地标为基准,比较了模拟 FD 长度与实际 FD 长度的差异。

结果

虚拟 FD 长度偏差的平均值为 2.2mm(SD±1.9mm),相当于 9.5%(SD±8.2%)。低估病例的偏差低于高估病例。标称 20mm 长的 FD 病例具有最高的预测准确性。

结论

研究结果表明,本研究中使用的虚拟支架成形术能够提前以临床足够的精度预测 FD 长度,因此可能成为介入治疗计划的有用工具。高质量的成像数据是必需的,而在介入过程中对 FD 的处理和操作可能会影响准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验