Suppr超能文献

基于粘性程函方程从激活图中反定位最早心脏激活位点

Inverse localization of earliest cardiac activation sites from activation maps based on the viscous Eikonal equation.

作者信息

Kunisch Karl, Neic Aurel, Plank Gernot, Trautmann Philip

机构信息

, Heinrichstraße 36, 8010, Graz, Austria.

, Auenbruggerplatz 2, 8036, Graz, Austria.

出版信息

J Math Biol. 2019 Dec;79(6-7):2033-2068. doi: 10.1007/s00285-019-01419-3. Epub 2019 Aug 31.

Abstract

In this study we propose a novel method for identifying the locations of earliest activation in the human left ventricle from activation maps measured at the epicardial surface. Electrical activation is modeled based on the viscous Eikonal equation. The sites of earliest activation are identified by solving a minimization problem. Arbitrary initial locations are assumed, which are then modified based on a shape derivative based perturbation field until a minimal mismatch between the computed and the given activation maps on the epicardial surface is achieved. The proposed method is tested in two numerical benchmarks, a generic 2D unit-square benchmark, and an anatomically accurate MRI-derived 3D human left ventricle benchmark to demonstrate potential utility in a clinical context. For unperturbed input data, our localization method is able to accurately reconstruct the earliest activation sites in both benchmarks with deviations of only a fraction of the used spatial discretization size. Further, with the quality of the input data reduced by spatial undersampling and addition of noise, we demonstrate that an accurate identification of the sites of earliest activation is still feasible.

摘要

在本研究中,我们提出了一种全新的方法,用于从心外膜表面测量的激活图中识别人类左心室最早激活的位置。基于粘性程函方程对电激活进行建模。通过求解一个最小化问题来确定最早激活的部位。假设任意初始位置,然后基于基于形状导数的扰动场对其进行修改,直到计算得到的心外膜表面激活图与给定激活图之间的不匹配最小化。所提出的方法在两个数值基准测试中进行了测试,一个是通用的二维单位正方形基准测试,另一个是解剖学上精确的基于MRI的三维人类左心室基准测试,以证明其在临床环境中的潜在效用。对于未受扰动的输入数据,我们的定位方法能够在两个基准测试中准确重建最早激活部位,偏差仅为所用空间离散化大小的一小部分。此外,通过空间欠采样和添加噪声降低输入数据的质量,我们证明了准确识别最早激活部位仍然是可行的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb9b/6858910/ecd6e680f740/285_2019_1419_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验