Suppr超能文献

利用基于区域体积的降阶无迹卡尔曼滤波进行心脏机电模型的个性化定制。

Personalization of a cardiac electromechanical model using reduced order unscented Kalman filtering from regional volumes.

机构信息

INRIA, Asclepios Research Project, Sophia Antipolis, France.

出版信息

Med Image Anal. 2013 Oct;17(7):816-29. doi: 10.1016/j.media.2013.04.012. Epub 2013 May 4.

Abstract

Patient-specific cardiac modeling can help in understanding pathophysiology and therapy planning. However it requires to combine functional and anatomical data in order to build accurate models and to personalize the model geometry, kinematics, electrophysiology and mechanics. Personalizing the electromechanical coupling from medical images is a challenging task. We use the Bestel-Clément-Sorine (BCS) electromechanical model of the heart, which provides reasonable accuracy with a reasonable number of parameters (14 for each ventricle) compared to the available clinical data at the organ level. We propose a personalization strategy from cine MRI data in two steps. We first estimate global parameters with an automatic calibration algorithm based on the Unscented Transform which allows to initialize the parameters while matching the volume and pressure curves. In a second step we locally personalize the contractilities of all AHA (American Heart Association) zones of the left ventricle using the reduced order unscented Kalman filtering on Regional Volumes. This personalization strategy was validated synthetically and tested successfully on eight healthy and three pathological cases.

摘要

患者特异性心脏建模有助于理解病理生理学和治疗计划。然而,它需要结合功能和解剖数据,以建立准确的模型并对模型几何形状、运动学、电生理学和力学进行个性化处理。从医学图像中个性化机电耦合并不是一件容易的事情。我们使用 Bestel-Clément-Sorine (BCS) 心脏机电模型,与器官水平上可用的临床数据相比,该模型的参数数量合理(每个心室 14 个参数),具有合理的准确性。我们提出了一种两步法的电影磁共振成像数据个性化策略。我们首先使用基于无迹变换的自动校准算法估计全局参数,该算法允许在匹配体积和压力曲线的同时初始化参数。在第二步中,我们使用简化的无迹卡尔曼滤波对区域性容积进行局部个性化处理,以确定左心室所有 AHA(美国心脏协会)区域的收缩性。该个性化策略经过了综合验证,并成功应用于 8 个健康和 3 个病理案例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验