Suppr超能文献

SF3B1 中的致病突变通过与 SUGP1 的相互作用破坏剪接而改变剪接。

Disease-Causing Mutations in SF3B1 Alter Splicing by Disrupting Interaction with SUGP1.

机构信息

Department of Biological Sciences, Columbia University, New York, NY 10027, USA.

Irving Cancer Research Center, Columbia University, New York, NY 10032, USA.

出版信息

Mol Cell. 2019 Oct 3;76(1):82-95.e7. doi: 10.1016/j.molcel.2019.07.017. Epub 2019 Aug 29.

Abstract

SF3B1, which encodes an essential spliceosomal protein, is frequently mutated in myelodysplastic syndromes (MDS) and many cancers. However, the defect of mutant SF3B1 is unknown. Here, we analyzed RNA sequencing data from MDS patients and confirmed that SF3B1 mutants use aberrant 3' splice sites. To elucidate the underlying mechanism, we purified complexes containing either wild-type or the hotspot K700E mutant SF3B1 and found that levels of a poorly studied spliceosomal protein, SUGP1, were reduced in mutant spliceosomes. Strikingly, SUGP1 knockdown completely recapitulated the splicing errors, whereas SUGP1 overexpression drove the protein, which our data suggest plays an important role in branchsite recognition, into the mutant spliceosome and partially rescued splicing. Other hotspot SF3B1 mutants showed similar altered splicing and diminished interaction with SUGP1. Our study demonstrates that SUGP1 loss is a common defect of spliceosomes with disease-causing SF3B1 mutations and, because this defect can be rescued, suggests possibilities for therapeutic intervention.

摘要

SF3B1 编码一种必需的剪接体蛋白,在骨髓增生异常综合征(MDS)和许多癌症中经常发生突变。然而,突变型 SF3B1 的缺陷尚不清楚。在这里,我们分析了 MDS 患者的 RNA 测序数据,并证实 SF3B1 突变体使用异常的 3'剪接位点。为了阐明潜在的机制,我们纯化了含有野生型或热点 K700E 突变 SF3B1 的复合物,并发现突变剪接体中一种研究甚少的剪接体蛋白 SUGP1 的水平降低。引人注目的是,SUGP1 的敲低完全再现了剪接错误,而 SUGP1 的过表达将该蛋白(我们的数据表明该蛋白在分支位点识别中发挥重要作用)驱动到突变剪接体中,并部分挽救了剪接。其他热点 SF3B1 突变体也表现出类似的改变剪接和与 SUGP1 相互作用减弱。我们的研究表明,SUGP1 的缺失是导致疾病的 SF3B1 突变的剪接体的常见缺陷,并且由于这种缺陷可以得到挽救,因此提示了治疗干预的可能性。

相似文献

1
Disease-Causing Mutations in SF3B1 Alter Splicing by Disrupting Interaction with SUGP1.
Mol Cell. 2019 Oct 3;76(1):82-95.e7. doi: 10.1016/j.molcel.2019.07.017. Epub 2019 Aug 29.
2
Pan-cancer analysis identifies mutations in that recapitulate mutant SF3B1 splicing dysregulation.
Proc Natl Acad Sci U S A. 2020 May 12;117(19):10305-10312. doi: 10.1073/pnas.1922622117. Epub 2020 Apr 24.
4
SF3B1 mutant myelodysplastic syndrome: Recent advances.
Adv Biol Regul. 2021 Jan;79:100776. doi: 10.1016/j.jbior.2020.100776. Epub 2020 Dec 25.
5
DHX15 is involved in SUGP1-mediated RNA missplicing by mutant SF3B1 in cancer.
Proc Natl Acad Sci U S A. 2022 Dec 6;119(49):e2216712119. doi: 10.1073/pnas.2216712119. Epub 2022 Dec 2.
8
Splicing factor mutations in the myelodysplastic syndromes: target genes and therapeutic approaches.
Adv Biol Regul. 2018 Jan;67:13-29. doi: 10.1016/j.jbior.2017.09.008. Epub 2017 Sep 22.
9
Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.
Adv Biol Regul. 2017 Jan;63:59-70. doi: 10.1016/j.jbior.2016.08.001. Epub 2016 Aug 21.
10
Somatic mutations in myelodysplastic syndrome with ring sideroblasts and chronic lymphocytic leukaemia.
J Clin Pathol. 2019 Nov;72(11):778-782. doi: 10.1136/jclinpath-2019-205895. Epub 2019 Aug 31.

引用本文的文献

3
Spliceosome-associated quality control.
Cell Res. 2025 Apr 21. doi: 10.1038/s41422-025-01118-3.
4
Cancer-associated SF3B1 mutation K700E causes widespread changes in U2/branchpoint recognition without altering splicing.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2423776122. doi: 10.1073/pnas.2423776122. Epub 2025 Mar 26.
5
SUGP1 loss is the sole driver of SF3B1 hotspot mutant missplicing in cancer.
bioRxiv. 2025 Feb 17:2025.02.17.638713. doi: 10.1101/2025.02.17.638713.
7
SF3B1: from core splicing factor to oncogenic driver.
RNA. 2025 Feb 19;31(3):314-332. doi: 10.1261/rna.080368.124.
9
SpliceMutr Enables Pan-Cancer Analysis of Splicing-Derived Neoantigen Burden in Tumors.
Cancer Res Commun. 2024 Dec 1;4(12):3137-3150. doi: 10.1158/2767-9764.CRC-23-0309.
10
Aberrant pre-mRNA processing in cancer.
J Exp Med. 2024 Nov 4;221(11). doi: 10.1084/jem.20230891. Epub 2024 Sep 24.

本文引用的文献

1
Visualizing and interpreting cancer genomics data via the Xena platform.
Nat Biotechnol. 2020 Jun;38(6):675-678. doi: 10.1038/s41587-020-0546-8.
3
Complementary Mutations in the N and L Proteins for Restoration of Viral RNA Synthesis.
J Virol. 2018 Oct 29;92(22). doi: 10.1128/JVI.01417-18. Print 2018 Nov 15.
4
Chronic immune response dysregulation in MDS pathogenesis.
Blood. 2018 Oct 11;132(15):1553-1560. doi: 10.1182/blood-2018-03-784116. Epub 2018 Aug 13.
5
7
PPP2R5A: A multirole protein phosphatase subunit in regulating cancer development.
Cancer Lett. 2018 Feb 1;414:222-229. doi: 10.1016/j.canlet.2017.11.024. Epub 2017 Nov 23.
8
Stabilization of protein-protein interactions in drug discovery.
Expert Opin Drug Discov. 2017 Sep;12(9):925-940. doi: 10.1080/17460441.2017.1346608. Epub 2017 Jul 11.
9
Small-molecule stabilization of the p53 - 14-3-3 protein-protein interaction.
FEBS Lett. 2017 Aug;591(16):2449-2457. doi: 10.1002/1873-3468.12723. Epub 2017 Aug 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验