文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

贝叶斯向量自回归模型中的高维后验一致性

High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models.

作者信息

Ghosh Satyajit, Khare Kshitij, Michailidis George

机构信息

Department of Statistics and the Informatics Institute, University of Florida.

出版信息

J Am Stat Assoc. 2019;114(526):735-748. doi: 10.1080/01621459.2018.1437043. Epub 2018 Aug 7.


DOI:10.1080/01621459.2018.1437043
PMID:31474783
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6716151/
Abstract

Vector autoregressive (VAR) models aim to capture linear temporal interdependencies amongst multiple time series. They have been widely used in macroeconomics and financial econometrics and more recently have found novel applications in functional genomics and neuroscience. These applications have also accentuated the need to investigate the behavior of the VAR model in a high-dimensional regime, which provides novel insights into the role of temporal dependence for regularized estimates of the model's parameters. However, hardly anything is known regarding properties of the posterior distribution for Bayesian VAR models in such regimes. In this work, we consider a VAR model with two prior choices for the autoregressive coefficient matrix: a non-hierarchical matrix-normal prior and a hierarchical prior, which corresponds to an scale mixture of normals. We establish posterior consistency for both these priors under standard regularity assumptions, when the dimension of the VAR model grows with the sample size (but still remains smaller than ). A special case corresponds to a shrinkage prior that introduces (group) sparsity in the columns of the model coefficient matrices. The performance of the model estimates are illustrated on synthetic and real macroeconomic data sets.

摘要

向量自回归(VAR)模型旨在捕捉多个时间序列之间的线性时间依存关系。它们已在宏观经济学和金融计量经济学中广泛使用,并且最近在功能基因组学和神经科学中发现了新的应用。这些应用也凸显了在高维情况下研究VAR模型行为的必要性,这为时间依赖性在模型参数正则估计中的作用提供了新的见解。然而,对于这种情况下贝叶斯VAR模型后验分布的性质却知之甚少。在这项工作中,我们考虑一个VAR模型,对自回归系数矩阵有两种先验选择:一种是非层次矩阵正态先验,另一种是层次先验,它对应于正态分布的尺度混合。在标准正则性假设下,当VAR模型的维度随着样本量增长(但仍小于)时,我们建立了这两种先验的后验一致性。一个特殊情况对应于一种收缩先验,它在模型系数矩阵的列中引入(组)稀疏性。在合成和实际宏观经济数据集上展示了模型估计的性能。

相似文献

[1]
High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models.

J Am Stat Assoc. 2019

[2]
Combining shrinkage and sparsity in conjugate vector autoregressive models.

J Appl Econ (Chichester Engl). 2021

[3]
Regularizing priors for Bayesian VAR applications to large ecological datasets.

PeerJ. 2022

[4]
Dirichlet-Laplace priors for optimal shrinkage.

J Am Stat Assoc. 2015-12-1

[5]
A Hierarchical Bayesian Model for Differential Connectivity in Multi-trial Brain Signals.

Econom Stat. 2020-7

[6]
Robust Estimation of Transition Matrices in High Dimensional Heavy-tailed Vector Autoregressive Processes.

JMLR Workshop Conf Proc. 2015-7

[7]
Regularized Joint Estimation of Related Vector Autoregressive Models.

Comput Stat Data Anal. 2019-11

[8]
Variable Selection Using Nonlocal Priors in High-Dimensional Generalized Linear Models With Application to fMRI Data Analysis.

Entropy (Basel). 2020-7-23

[9]
Precise periodic components estimation for chronobiological signals through Bayesian Inference with sparsity enforcing prior.

EURASIP J Bioinform Syst Biol. 2016-1-20

[10]
Bayesian sparse multiple regression for simultaneous rank reduction and variable selection.

Biometrika. 2020-3

引用本文的文献

[1]
Flexible Bayesian Product Mixture Models for Vector Autoregressions.

J Mach Learn Res. 2024-4

[2]
Granger Causality: A Review and Recent Advances.

Annu Rev Stat Appl. 2022-3

本文引用的文献

[1]
Network Granger Causality with Inherent Grouping Structure.

J Mach Learn Res. 2015

[2]
Granger causality analysis in neuroscience and neuroimaging.

J Neurosci. 2015-2-25

[3]
Generalized Beta Mixtures of Gaussians.

Adv Neural Inf Process Syst. 2011

[4]
GENERALIZED DOUBLE PARETO SHRINKAGE.

Stat Sin. 2013-1-1

[5]
Testing the quantity-quality fertility model: the use of twins as a natural experiment.

Econometrica. 1980-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索