Suppr超能文献

对贝叶斯 VAR 应用于大型生态数据集的先验进行正则化。

Regularizing priors for Bayesian VAR applications to large ecological datasets.

机构信息

Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA, United States.

Fishery Resource Analysis and Monitoring Division, Northwest Fisheries Science Center, Seattle, WA, USA.

出版信息

PeerJ. 2022 Nov 8;10:e14332. doi: 10.7717/peerj.14332. eCollection 2022.

Abstract

Using multi-species time series data has long been of interest for estimating inter-specific interactions with vector autoregressive models (VAR) and state space VAR models (VARSS); these methods are also described in the ecological literature as multivariate autoregressive models (MAR, MARSS). To date, most studies have used these approaches on relatively small food webs where the total number of interactions to be estimated is relatively small. However, as the number of species or functional groups increases, the length of the time series must also increase to provide enough degrees of freedom with which to estimate the pairwise interactions. To address this issue, we use Bayesian methods to explore the potential benefits of using regularized priors, such as Laplace and regularized horseshoe, on estimating interspecific interactions with VAR and VARSS models. We first perform a large-scale simulation study, examining the performance of alternative priors across various levels of observation error. Results from these simulations show that for sparse matrices, the regularized horseshoe prior minimizes the bias and variance across all inter-specific interactions. We then apply the Bayesian VAR model with regularized priors to a output from a large marine food web model (37 species) from the west coast of the USA. Results from this analysis indicate that regularization improves predictive performance of the VAR model, while still identifying important inter-specific interactions.

摘要

使用多物种时间序列数据一直以来都是通过向量自回归模型 (VAR) 和状态空间向量自回归模型 (VARSS) 来估计种间相互作用的研究热点;这些方法在生态学文献中也被描述为多元自回归模型 (MAR, MARSS)。迄今为止,大多数研究都在相对较小的食物网中使用这些方法,这些食物网中需要估计的相互作用总数相对较少。然而,随着物种或功能组数量的增加,时间序列的长度也必须增加,以提供足够的自由度来估计成对的相互作用。为了解决这个问题,我们使用贝叶斯方法来探索正则化先验(如拉普拉斯先验和正则化马蹄铁先验)在估计 VAR 和 VARSS 模型中的种间相互作用的潜在好处。我们首先进行了大规模的模拟研究,研究了不同观测误差水平下替代先验的性能。这些模拟结果表明,对于稀疏矩阵,正则化马蹄铁先验可以最小化所有种间相互作用的偏差和方差。然后,我们将具有正则化先验的贝叶斯 VAR 模型应用于来自美国西海岸的一个大型海洋食物网模型(37 个物种)的输出。这项分析的结果表明,正则化可以提高 VAR 模型的预测性能,同时仍然可以识别重要的种间相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f37e/9651052/3477156423f6/peerj-10-14332-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验