文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

具有固有分组结构的网络格兰杰因果关系

Network Granger Causality with Inherent Grouping Structure.

作者信息

Basu Sumanta, Shojaie Ali, Michailidis George

机构信息

Department of Statistics, University of Michigan, Ann Arbor, MI 48109-1092, USA.

Department of Biostatistics, University of Washington, Seattle, WA, USA.

出版信息

J Mach Learn Res. 2015;16(13):417-453.


DOI:
PMID:34267606
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8278320/
Abstract

The problem of estimating high-dimensional network models arises naturally in the analysis of many biological and socio-economic systems. In this work, we aim to learn a network structure from temporal panel data, employing the framework of Granger causal models under the assumptions of sparsity of its edges and inherent grouping structure among its nodes. To that end, we introduce a group lasso regression regularization framework, and also examine a thresholded variant to address the issue of group misspecification. Further, the norm consistency and variable selection consistency of the estimates are established, the latter under the novel concept of direction consistency. The performance of the proposed methodology is assessed through an extensive set of simulation studies and comparisons with existing techniques. The study is illustrated on two motivating examples coming from functional genomics and financial econometrics.

摘要

在许多生物和社会经济系统的分析中,估计高维网络模型的问题自然而然地出现了。在这项工作中,我们旨在从时间面板数据中学习网络结构,采用格兰杰因果模型框架,其假设为边的稀疏性以及节点之间固有的分组结构。为此,我们引入了一个组套索回归正则化框架,并研究了一种阈值化变体来解决组错误指定的问题。此外,还建立了估计量的范数一致性和变量选择一致性,后者是在方向一致性这一新概念下建立的。通过大量的模拟研究以及与现有技术的比较,对所提出方法的性能进行了评估。该研究通过来自功能基因组学和金融计量经济学的两个激励性示例进行了说明。

相似文献

[1]
Network Granger Causality with Inherent Grouping Structure.

J Mach Learn Res. 2015

[2]
Joint learning of multiple Granger causal networks via non-convex regularizations: Inference of group-level brain connectivity.

Neural Netw. 2022-5

[3]
Non-Asymptotic Guarantees for Reliable Identification of Granger Causality via the LASSO.

IEEE Trans Inf Theory. 2023-11

[4]
Sparse Granger Causality Analysis Model Based on Sensors Correlation for Emotion Recognition Classification in Electroencephalography.

Front Comput Neurosci. 2021-7-29

[5]
New Insights into Signed Path Coefficient Granger Causality Analysis.

Front Neuroinform. 2016-10-27

[6]
Prior knowledge driven Granger causality analysis on gene regulatory network discovery.

BMC Bioinformatics. 2015-8-28

[7]
Granger-Causality Inference of the Existence of Unobserved Important Components in Network Analysis.

Entropy (Basel). 2021-7-30

[8]
Reconstruction of Complex Directional Networks with Group Lasso Nonlinear Conditional Granger Causality.

Sci Rep. 2017-6-7

[9]
Granger causality using Jacobian in neural networks.

Chaos. 2023-2

[10]
Neural Granger Causality.

IEEE Trans Pattern Anal Mach Intell. 2022-8

引用本文的文献

[1]
Non-Asymptotic Guarantees for Reliable Identification of Granger Causality via the LASSO.

IEEE Trans Inf Theory. 2023-11

[2]
Granger Causality: A Review and Recent Advances.

Annu Rev Stat Appl. 2022-3

[3]
Penalized estimation of threshold auto-regressive models with many components and thresholds.

Electron J Stat. 2022

[4]
Statistical Perspective on Functional and Causal Neural Connectomics: A Comparative Study.

Front Syst Neurosci. 2022-3-2

[5]
Dense time-course gene expression profiling of the Drosophila melanogaster innate immune response.

BMC Genomics. 2021-4-26

[6]
Neural Granger Causality.

IEEE Trans Pattern Anal Mach Intell. 2022-8

[7]
Estimation of Dynamic Networks for High-Dimensional Nonstationary Time Series.

Entropy (Basel). 2019-12-31

[8]
Regularized Joint Estimation of Related Vector Autoregressive Models.

Comput Stat Data Anal. 2019-11

[9]
High-Dimensional Posterior Consistency in Bayesian Vector Autoregressive Models.

J Am Stat Assoc. 2019

[10]
Bioinformatics identification of potential genes and pathways in preeclampsia based on functional gene set enrichment analyses.

Exp Ther Med. 2019-9

本文引用的文献

[1]
Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs.

Biometrika. 2010-9

[2]
Consistent group selection in high-dimensional linear regression.

Bernoulli (Andover). 2010-11

[3]
Discovering graphical Granger causality using the truncating lasso penalty.

Bioinformatics. 2010-9-15

[4]
Penalized methods for bi-level variable selection.

Stat Interface. 2009-7-1

[5]
A group bridge approach for variable selection.

Biometrika. 2009-6

[6]
Grouped graphical Granger modeling for gene expression regulatory networks discovery.

Bioinformatics. 2009-6-15

[7]
Modeling gene expression regulatory networks with the sparse vector autoregressive model.

BMC Syst Biol. 2007-8-30

[8]
Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis.

J Biol Chem. 2005-10-21

[9]
Modeling T-cell activation using gene expression profiling and state-space models.

Bioinformatics. 2004-6-12

[10]
Inferring cellular networks using probabilistic graphical models.

Science. 2004-2-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索