Basu Sumanta, Shojaie Ali, Michailidis George
Department of Statistics, University of Michigan, Ann Arbor, MI 48109-1092, USA.
Department of Biostatistics, University of Washington, Seattle, WA, USA.
J Mach Learn Res. 2015;16(13):417-453.
The problem of estimating high-dimensional network models arises naturally in the analysis of many biological and socio-economic systems. In this work, we aim to learn a network structure from temporal panel data, employing the framework of Granger causal models under the assumptions of sparsity of its edges and inherent grouping structure among its nodes. To that end, we introduce a group lasso regression regularization framework, and also examine a thresholded variant to address the issue of group misspecification. Further, the norm consistency and variable selection consistency of the estimates are established, the latter under the novel concept of direction consistency. The performance of the proposed methodology is assessed through an extensive set of simulation studies and comparisons with existing techniques. The study is illustrated on two motivating examples coming from functional genomics and financial econometrics.
在许多生物和社会经济系统的分析中,估计高维网络模型的问题自然而然地出现了。在这项工作中,我们旨在从时间面板数据中学习网络结构,采用格兰杰因果模型框架,其假设为边的稀疏性以及节点之间固有的分组结构。为此,我们引入了一个组套索回归正则化框架,并研究了一种阈值化变体来解决组错误指定的问题。此外,还建立了估计量的范数一致性和变量选择一致性,后者是在方向一致性这一新概念下建立的。通过大量的模拟研究以及与现有技术的比较,对所提出方法的性能进行了评估。该研究通过来自功能基因组学和金融计量经济学的两个激励性示例进行了说明。
J Mach Learn Res. 2015
IEEE Trans Inf Theory. 2023-11
Front Neuroinform. 2016-10-27
BMC Bioinformatics. 2015-8-28
Entropy (Basel). 2021-7-30
Chaos. 2023-2
IEEE Trans Pattern Anal Mach Intell. 2022-8
IEEE Trans Inf Theory. 2023-11
Annu Rev Stat Appl. 2022-3
Front Syst Neurosci. 2022-3-2
IEEE Trans Pattern Anal Mach Intell. 2022-8
Entropy (Basel). 2019-12-31
Comput Stat Data Anal. 2019-11
J Am Stat Assoc. 2019
Bernoulli (Andover). 2010-11
Bioinformatics. 2010-9-15
Stat Interface. 2009-7-1
Biometrika. 2009-6
Bioinformatics. 2009-6-15
BMC Syst Biol. 2007-8-30
Bioinformatics. 2004-6-12
Science. 2004-2-6