Suppr超能文献

在高维广义线性模型中使用非局部先验进行变量选择及其在功能磁共振成像数据分析中的应用

Variable Selection Using Nonlocal Priors in High-Dimensional Generalized Linear Models With Application to fMRI Data Analysis.

作者信息

Cao Xuan, Lee Kyoungjae

机构信息

Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, USA.

Department of Statistics, Inha University, Incheon 22212, Korea.

出版信息

Entropy (Basel). 2020 Jul 23;22(8):807. doi: 10.3390/e22080807.

Abstract

High-dimensional variable selection is an important research topic in modern statistics. While methods using nonlocal priors have been thoroughly studied for variable selection in linear regression, the crucial high-dimensional model selection properties for nonlocal priors in generalized linear models have not been investigated. In this paper, we consider a hierarchical generalized linear regression model with the product moment nonlocal prior over coefficients and examine its properties. Under standard regularity assumptions, we establish strong model selection consistency in a high-dimensional setting, where the number of covariates is allowed to increase at a sub-exponential rate with the sample size. The Laplace approximation is implemented for computing the posterior probabilities and the shotgun stochastic search procedure is suggested for exploring the posterior space. The proposed method is validated through simulation studies and illustrated by a real data example on functional activity analysis in fMRI study for predicting Parkinson's disease.

摘要

高维变量选择是现代统计学中的一个重要研究课题。虽然使用非局部先验的方法已在线性回归的变量选择中得到深入研究,但广义线性模型中非局部先验的关键高维模型选择性质尚未得到研究。在本文中,我们考虑一个系数具有乘积矩非局部先验的分层广义线性回归模型,并研究其性质。在标准正则性假设下,我们在高维设置中建立了强模型选择一致性,其中协变量的数量允许以低于指数的速率随样本量增加。采用拉普拉斯近似来计算后验概率,并建议使用散弹枪随机搜索程序来探索后验空间。所提出的方法通过模拟研究进行了验证,并通过功能磁共振成像(fMRI)研究中用于预测帕金森病的功能活动分析的实际数据示例进行了说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1355/7517378/05b907728ea8/entropy-22-00807-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验