Suppr超能文献

错配修复系统的失活在适应性实验室进化过程中使基因型格局多样化。

Inactivation of a Mismatch-Repair System Diversifies Genotypic Landscape of During Adaptive Laboratory Evolution.

作者信息

Kang Minjeong, Kim Kangsan, Choe Donghui, Cho Suhyung, Kim Sun Chang, Palsson Bernhard, Cho Byung-Kwan

机构信息

Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.

KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.

出版信息

Front Microbiol. 2019 Aug 16;10:1845. doi: 10.3389/fmicb.2019.01845. eCollection 2019.

Abstract

Adaptive laboratory evolution (ALE) is used to find causal mutations that underlie improved strain performance under the applied selection pressure. ALE studies have revealed that mutator populations tend to outcompete their non-mutator counterparts following the evolutionary trajectory. Among them, inactivated mutator cells, characterize d by a dysfunctional methyl-mismatch repair system, are frequently found in ALE experiments. Here, we examined inactivation as an approach to facilitate ALE of The wild-type MG1655 and knock-out derivative (Δ) were evolved in parallel for 800 generations on lactate or glycerol minimal media in a serial-transfer experiment. Whole-genome re-sequencing of each lineage at 100-generation intervals revealed that (1) mutations emerge rapidly in the Δ compared to in the wild-type strain; (2) mutations were more than fourfold higher in the Δ strain at the end-point populations compared to the wild-type strain; and (3) a significant number of random mutations accumulated in the Δ strains. We then measured the fitness of the end-point populations on an array of non-adaptive carbon sources. Interestingly, collateral fitness increases on non-adaptive carbon sources were more pronounced in the Δ strains than the parental strain. Fitness measurement of single mutants revealed that the collateral fitness increase seen in the mutator lineages can be attributed to a pool of random mutations. Together, this study demonstrates that short-term mutator ALE extensively expands possible genotype space, resulting in versatile bacteria with elevated fitness levels across various carbon sources.

摘要

适应性实验室进化(ALE)用于寻找在施加的选择压力下提高菌株性能的因果突变。ALE研究表明,突变体群体在进化轨迹上往往比非突变体对应物更具竞争力。其中,以功能失调的甲基错配修复系统为特征的失活突变体细胞在ALE实验中经常被发现。在这里,我们研究了失活作为促进野生型MG1655的ALE的一种方法,并在连续转移实验中,将敲除衍生物(Δ)在乳酸或甘油基本培养基上平行进化800代。在100代间隔对每个谱系进行全基因组重测序表明:(1)与野生型菌株相比,Δ菌株中的突变出现得更快;(2)终点群体中Δ菌株的突变比野生型菌株高四倍以上;(3)Δ菌株中积累了大量随机突变。然后,我们在一系列非适应性碳源上测量了终点群体的适应性。有趣的是,与亲本菌株相比,Δ菌株在非适应性碳源上的附带适应性增加更为明显。单突变体的适应性测量表明,突变体谱系中观察到的附带适应性增加可归因于一组随机突变。总之,这项研究表明,短期突变体ALE广泛扩展了可能的基因型空间,从而产生了在各种碳源上具有较高适应性水平的多功能细菌。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6fe9/6706779/2a0d08e2012b/fmicb-10-01845-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验