Suppr超能文献

优化用于生物基分子工业化规模生产的菌株工程过程。

Optimizing the strain engineering process for industrial-scale production of bio-based molecules.

作者信息

Abbate Eric, Andrion Jennifer, Apel Amanda, Biggs Matthew, Chaves Julie, Cheung Kristi, Ciesla Anthony, Clark-ElSayed Alia, Clay Michael, Contridas Riarose, Fox Richard, Hein Glenn, Held Dan, Horwitz Andrew, Jenkins Stefan, Kalbarczyk Karolina, Krishnamurthy Nandini, Mirsiaghi Mona, Noon Katherine, Rowe Mike, Shepherd Tyson, Tarasava Katia, Tarasow Theodore M, Thacker Drew, Villa Gladys, Yerramsetty Krishna

机构信息

Inscripta, Inc., 5720 Stoneridge Dr, Suite 300, Pleasanton, CA 94588, USA.

出版信息

J Ind Microbiol Biotechnol. 2023 Feb 17;50(1). doi: 10.1093/jimb/kuad025.

Abstract

Biomanufacturing could contribute as much as ${$}$30 trillion to the global economy by 2030. However, the success of the growing bioeconomy depends on our ability to manufacture high-performing strains in a time- and cost-effective manner. The Design-Build-Test-Learn (DBTL) framework has proven to be an effective strain engineering approach. Significant improvements have been made in genome engineering, genotyping, and phenotyping throughput over the last couple of decades that have greatly accelerated the DBTL cycles. However, to achieve a radical reduction in strain development time and cost, we need to look at the strain engineering process through a lens of optimizing the whole cycle, as opposed to simply increasing throughput at each stage. We propose an approach that integrates all 4 stages of the DBTL cycle and takes advantage of the advances in computational design, high-throughput genome engineering, and phenotyping methods, as well as machine learning tools for making predictions about strain scale-up performance. In this perspective, we discuss the challenges of industrial strain engineering, outline the best approaches to overcoming these challenges, and showcase examples of successful strain engineering projects for production of heterologous proteins, amino acids, and small molecules, as well as improving tolerance, fitness, and de-risking the scale-up of industrial strains.

摘要

到2030年,生物制造对全球经济的贡献可能高达30万亿美元。然而,不断发展的生物经济的成功取决于我们能否以具有时间和成本效益的方式制造出高性能菌株。设计-构建-测试-学习(DBTL)框架已被证明是一种有效的菌株工程方法。在过去几十年里,基因组工程、基因分型和表型分析通量有了显著提高,极大地加速了DBTL循环。然而,要想从根本上缩短菌株开发时间和成本,我们需要从优化整个循环的角度审视菌株工程过程,而不是仅仅提高每个阶段的通量。我们提出一种方法,该方法整合了DBTL循环的所有四个阶段,并利用了计算设计、高通量基因组工程和表型分析方法以及用于预测菌株放大性能的机器学习工具方面的进展。从这个角度出发,我们讨论了工业菌株工程面临的挑战,概述了克服这些挑战的最佳方法,并展示了成功的菌株工程项目实例,这些项目涉及生产异源蛋白质、氨基酸和小分子,以及提高工业菌株的耐受性、适应性和放大过程中的风险降低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d6b/10548853/89dcd603abcc/kuad025fig1g.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验