Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany; Department of Radiology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA; Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA.
Institute for Diagnostic and Interventional Radiology, University Hospital Cologne, Cologne, Germany; Philips Research Europe, Aachen, Germany.
World Neurosurg. 2019 Dec;132:e366-e390. doi: 10.1016/j.wneu.2019.08.148. Epub 2019 Aug 30.
Meningioma grading is relevant to therapy decisions in complete or partial resection, observation, and radiotherapy because higher grades are associated with tumor growth and recurrence. The differentiation of low and intermediate grades is particularly challenging. This study attempts to apply radiomics-based shape and texture analysis on routine multiparametric magnetic resonance imaging (MRI) from different scanners and institutions for grading.
We used MRI data (T1-weighted/T2-weighted, T1-weighted-contrast-enhanced [T1CE], fluid-attenuated inversion recovery [FLAIR], diffusion-weighted imaging [DWI], apparent diffusion coefficient [ADC]) of grade I (n = 46) and grade II (n = 25) nontreated meningiomas with histologic workup. Two experienced radiologists performed manual tumor segmentations on FLAIR, T1CE, and ADC images in consensus. The MRI data were preprocessed through T1CE and T1-subtraction, coregistration, resampling, and normalization. A PyRadiomics package was used to generate 990 shape/texture features. Stepwise dimension reduction and robust radiomics feature selection were performed. Biopsy results were used as standard of reference.
Four statistically independent radiomics features were identified as showing the strongest predictive values for higher tumor grades: roundness-of-FLAIR-shape (area under curve [AUC], 0.80), cluster-shades-of-FLAIR/T1CE-gray-level (AUC, 0.80), DWI/ADC-gray-level-variability (AUC, 0.72), and FLAIR/T1CE-gray-level-energy (AUC, 0.76). In a multivariate logistic regression model, the combination of the features led to an AUC of 0.91 for the differentiation of grade I and grade II meningiomas.
Our results indicate that radiomics-based feature analysis applied on routine MRI is viable for meningioma grading, and a multivariate logistic regression model yielded strong classification performances. More advanced tumor stages are identifiable through certain shape parameters of the lesion, textural patterns in morphologic MRI sequences, and DWI/ADC variability.
脑膜瘤分级与完全或部分切除、观察和放疗的治疗决策相关,因为较高的分级与肿瘤生长和复发有关。低级别和中级别脑膜瘤的区分尤其具有挑战性。本研究试图应用基于放射组学的形状和纹理分析对来自不同扫描仪和机构的常规多参数磁共振成像(MRI)进行分级。
我们使用了具有组织学检查的 I 级(n=46)和 II 级(n=25)未治疗脑膜瘤的 MRI 数据(T1 加权/T2 加权、T1 加权对比增强[T1CE]、液体衰减反转恢复[FLAIR]、弥散加权成像[DWI]、表观弥散系数[ADC])。两位有经验的放射科医生在共识的基础上对 FLAIR、T1CE 和 ADC 图像进行手动肿瘤分割。通过 T1CE 和 T1 减影、配准、重采样和归一化对 MRI 数据进行预处理。使用 PyRadiomics 包生成 990 个形状/纹理特征。进行了逐步降维和稳健的放射组学特征选择。活检结果被用作参考标准。
确定了四个具有统计学意义的独立放射组学特征,它们显示出对较高肿瘤分级的最强预测值:FLAIR 形状的圆形度(曲线下面积[AUC],0.80)、FLAIR/T1CE 灰度级的聚类阴影(AUC,0.80)、DWI/ADC 灰度级变异性(AUC,0.72)和 FLAIR/T1CE 灰度级能量(AUC,0.76)。在多变量逻辑回归模型中,特征组合导致 I 级和 II 级脑膜瘤的区分 AUC 为 0.91。
我们的结果表明,应用于常规 MRI 的基于放射组学的特征分析对脑膜瘤分级是可行的,并且多元逻辑回归模型产生了较强的分类性能。通过病变的某些形状参数、形态 MRI 序列的纹理模式以及 DWI/ADC 变异性可以识别更高级别的肿瘤阶段。