Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA.
Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
Sci Rep. 2024 Oct 31;14(1):26191. doi: 10.1038/s41598-024-78311-8.
This study aims to develop and evaluate radiomics-based machine learning (ML) models for predicting meningioma grades using multiparametric magnetic resonance imaging (MRI). The study utilized the BraTS-MEN dataset's training split, including 698 patients (524 with grade 1 and 174 with grade 2-3 meningiomas). We extracted 4872 radiomic features from T1, T1 with contrast, T2, and FLAIR MRI sequences using PyRadiomics. LASSO regression reduced features to 176. The data was split into training (60%), validation (20%), and test (20%) sets. Five ML algorithms (TabPFN, XGBoost, LightGBM, CatBoost, and Random Forest) were employed to build models differentiating low-grade (grade 1) from high-grade (grade 2-3) meningiomas. Hyperparameter tuning was performed using Optuna, optimizing model-specific parameters and feature selection. The CatBoost model demonstrated the best performance, achieving an area under the receiver operating characteristic curve (AUROC) of 0.838 [95% confidence interval (CI): 0.689-0.935], precision of 0.492 (95% CI: 0.371-0.623), recall of 0.838 (95% CI: 0.689-0.935), F1 score of 0.620 (95% CI: 0.495-0.722), accuracy of 0.729 (95% CI: 0.650-0.800), an area under the precision-recall curve (AUPRC) of 0.620 (95% CI: 0.433-0.753), and Brier score of 0.156 (95% CI: 0.122-0.200). Other models showed comparable performance, with mean AUROCs ranging from 0.752 to 0.784. The radiomics-based ML approach presented in this study showcases the potential for non-invasive and pre-operative grading of meningiomas using multiparametric MRI. Further validation on larger and independent datasets is necessary to establish the robustness and generalizability of these findings.
本研究旨在开发和评估基于放射组学的机器学习(ML)模型,以使用多参数磁共振成像(MRI)预测脑膜瘤的分级。该研究利用 BraTS-MEN 数据集的训练集,其中包括 698 名患者(524 名 1 级和 174 名 2-3 级脑膜瘤)。我们使用 PyRadiomics 从 T1、T1 增强、T2 和 FLAIR MRI 序列中提取了 4872 个放射组学特征。LASSO 回归将特征减少到 176 个。数据分为训练集(60%)、验证集(20%)和测试集(20%)。使用 TabPFN、XGBoost、LightGBM、CatBoost 和 Random Forest 五种 ML 算法构建模型,区分低级别(1 级)和高级别(2-3 级)脑膜瘤。使用 Optuna 进行超参数调整,优化模型特定参数和特征选择。CatBoost 模型表现最佳,获得了 0.838 的接收器工作特征曲线下面积(AUROC)[95%置信区间(CI):0.689-0.935]、0.492 的精度(95%CI:0.371-0.623)、0.838 的召回率(95%CI:0.689-0.935)、0.620 的 F1 分数(95%CI:0.495-0.722)、0.729 的准确性(95%CI:0.650-0.800)、0.620 的精确召回曲线下面积(AUPRC)[95%CI:0.433-0.753]和 0.156 的 Brier 分数(95%CI:0.122-0.200)。其他模型的性能相当,平均 AUROC 在 0.752 到 0.784 之间。本研究提出的基于放射组学的 ML 方法展示了使用多参数 MRI 对脑膜瘤进行非侵入性和术前分级的潜力。需要在更大和更独立的数据集上进行进一步验证,以确定这些发现的稳健性和泛化能力。