Suppr超能文献

大规模多机构研究用于脑膜瘤分级的放射组学驱动的机器学习。

A large scale multi institutional study for radiomics driven machine learning for meningioma grading.

机构信息

Department of Neurosurgery, Mount Sinai Health System, New York, NY, USA.

Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.

出版信息

Sci Rep. 2024 Oct 31;14(1):26191. doi: 10.1038/s41598-024-78311-8.

Abstract

This study aims to develop and evaluate radiomics-based machine learning (ML) models for predicting meningioma grades using multiparametric magnetic resonance imaging (MRI). The study utilized the BraTS-MEN dataset's training split, including 698 patients (524 with grade 1 and 174 with grade 2-3 meningiomas). We extracted 4872 radiomic features from T1, T1 with contrast, T2, and FLAIR MRI sequences using PyRadiomics. LASSO regression reduced features to 176. The data was split into training (60%), validation (20%), and test (20%) sets. Five ML algorithms (TabPFN, XGBoost, LightGBM, CatBoost, and Random Forest) were employed to build models differentiating low-grade (grade 1) from high-grade (grade 2-3) meningiomas. Hyperparameter tuning was performed using Optuna, optimizing model-specific parameters and feature selection. The CatBoost model demonstrated the best performance, achieving an area under the receiver operating characteristic curve (AUROC) of 0.838 [95% confidence interval (CI): 0.689-0.935], precision of 0.492 (95% CI: 0.371-0.623), recall of 0.838 (95% CI: 0.689-0.935), F1 score of 0.620 (95% CI: 0.495-0.722), accuracy of 0.729 (95% CI: 0.650-0.800), an area under the precision-recall curve (AUPRC) of 0.620 (95% CI: 0.433-0.753), and Brier score of 0.156 (95% CI: 0.122-0.200). Other models showed comparable performance, with mean AUROCs ranging from 0.752 to 0.784. The radiomics-based ML approach presented in this study showcases the potential for non-invasive and pre-operative grading of meningiomas using multiparametric MRI. Further validation on larger and independent datasets is necessary to establish the robustness and generalizability of these findings.

摘要

本研究旨在开发和评估基于放射组学的机器学习(ML)模型,以使用多参数磁共振成像(MRI)预测脑膜瘤的分级。该研究利用 BraTS-MEN 数据集的训练集,其中包括 698 名患者(524 名 1 级和 174 名 2-3 级脑膜瘤)。我们使用 PyRadiomics 从 T1、T1 增强、T2 和 FLAIR MRI 序列中提取了 4872 个放射组学特征。LASSO 回归将特征减少到 176 个。数据分为训练集(60%)、验证集(20%)和测试集(20%)。使用 TabPFN、XGBoost、LightGBM、CatBoost 和 Random Forest 五种 ML 算法构建模型,区分低级别(1 级)和高级别(2-3 级)脑膜瘤。使用 Optuna 进行超参数调整,优化模型特定参数和特征选择。CatBoost 模型表现最佳,获得了 0.838 的接收器工作特征曲线下面积(AUROC)[95%置信区间(CI):0.689-0.935]、0.492 的精度(95%CI:0.371-0.623)、0.838 的召回率(95%CI:0.689-0.935)、0.620 的 F1 分数(95%CI:0.495-0.722)、0.729 的准确性(95%CI:0.650-0.800)、0.620 的精确召回曲线下面积(AUPRC)[95%CI:0.433-0.753]和 0.156 的 Brier 分数(95%CI:0.122-0.200)。其他模型的性能相当,平均 AUROC 在 0.752 到 0.784 之间。本研究提出的基于放射组学的 ML 方法展示了使用多参数 MRI 对脑膜瘤进行非侵入性和术前分级的潜力。需要在更大和更独立的数据集上进行进一步验证,以确定这些发现的稳健性和泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b78/11525589/2b5f1f7afcd0/41598_2024_78311_Fig2_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验