Department of Chemical Engineering and Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States.
Nano Lett. 2019 Sep 11;19(9):6687-6694. doi: 10.1021/acs.nanolett.9b03074. Epub 2019 Aug 23.
Despite the development of a myriad of mitigation methods, radiation damage continues to be a major limiting factor in transmission electron microscopy. Intriguing results have been reported using pulsed-laser driven and chopped electron beams for modulated dose delivery, but the underlying relationships and effects remain unclear. Indeed, delivering precisely timed single-electron packets to the specimen has yet to be systematically explored, and no direct comparisons to conventional methods within a common parameter space have been made. Here, using a model linear saturated hydrocarbon (-hexatriacontane, CH), we show that precisely timed delivery of each electron to the specimen, with a well-defined and uniform time between arrival, leads to a repeatable reduction in damage compared to conventional ultralow-dose methods for the same dose rate and the same accumulated dose. Using a femtosecond pulsed laser to confine the probability of electron emission to a 300 fs temporal window, we find damage to be sensitively dependent on the time between electron arrival (controlled with the laser repetition rate) and on the number of electrons per packet (controlled with the laser-pulse energy). Relative arrival times of 5, 20, and 100 μs were tested for electron packets comprised of, on average, 1, 5, and 20 electrons. In general, damage increased with decreasing time between electrons and, more substantially, with increasing electron number. Further, we find that improvements relative to conventional methods vanish once a threshold number of electrons per packet is reached. The results indicate that precise electron-by-electron dose delivery leads to a repeatable reduction in irreversible structural damage, and the systematic studies indicate this arises from control of the time between sequential electrons arriving within the same damage radius, all else being equal.
尽管已经开发出了无数的缓解方法,但辐射损伤仍然是透射电子显微镜的主要限制因素。使用脉冲激光驱动和电子束的斩波调制剂量传递已经报道了有趣的结果,但其中的关系和影响仍不清楚。事实上,精确地向样品传递定时的单电子束尚未得到系统的探索,也没有在共同的参数空间内与传统方法进行直接比较。在这里,我们使用模型线性饱和烃(-二十六烷,CH),展示了精确定时地将每个电子传送到样品,每个电子到达的时间间隔定义明确且均匀,与相同剂量率和相同累积剂量的传统超低剂量方法相比,会导致可重复的损伤减少。使用飞秒脉冲激光将电子发射的概率限制在 300fs 的时间窗口内,我们发现损伤对电子到达时间之间的时间(通过控制激光重复率来控制)和每个电子包中的电子数(通过控制激光脉冲能量来控制)非常敏感。对于每个电子包平均包含 1、5 和 20 个电子的电子包,测试了相对到达时间为 5、20 和 100μs。一般来说,损伤随着电子之间时间的减少而增加,而且随着电子数量的增加而显著增加。此外,我们发现一旦每个电子包中的电子数量达到一个阈值,与传统方法相比的改进就会消失。结果表明,精确的逐电子剂量传递可重复降低不可逆结构损伤,系统研究表明,这是由于控制同一损伤半径内相继电子到达的时间间隔,在其他条件相同的情况下实现的。