Department of Agricultural Sciences, University of Naples 'Federico II', Via Università 100, 80055, Portici, Naples, Italy.
Department of Biology, University of Naples 'Federico II', Via Cinthia, Monte Sant'Angelo, Building 7, 80126, Naples, Italy.
Plant Physiol Biochem. 2019 Oct;143:50-60. doi: 10.1016/j.plaphy.2019.08.010. Epub 2019 Aug 13.
The huge amounts of biomass residues, remaining in the field after tomato fruits harvesting, can be utilized to produce bioenergy. A multiple level approach aimed to characterize two Solanum pennellii introgression lines (ILs), with contrasting phenotypes for plant architecture and biomass was carried out. The study of gene expression dynamics, microscopy cell traits and qualitative and quantitative cell wall chemical compounds variation enabled the discovery of key genes and cell processes involved biomass accumulation and composition. Enhanced biomass production observed in IL2-6 line is due to a more effective coordination of chloroplasts and mitochondria energy fluxes. Microscopy analysis revealed a higher number of cells and chloroplasts in leaf epidermis in the high biomass line whilst chemical measurements on the two lines pointed out striking differences in the cell wall composition and organization. Taken together, our findings shed light on the mechanisms underlying the tomato biomass production and processability.
番茄果实收获后,田间会残留大量的生物质残体,可以将其利用来生产生物能源。本研究采用多层次的方法,对具有不同株型和生物质表型的两个 S. pennellii 渐渗系(ILs)进行了特征分析。通过研究基因表达动态、显微镜下细胞特征以及细胞壁化学成分的定性和定量变化,发现了参与生物质积累和组成的关键基因和细胞过程。在 IL2-6 系中观察到的增强的生物质生产是由于叶绿体和线粒体能量通量的更有效协调。显微镜分析显示,高生物质系的叶片表皮中有更多的细胞和叶绿体,而对这两个系的细胞壁化学成分和组织的化学测量表明,它们在细胞壁组成和组织上存在显著差异。总的来说,我们的研究结果揭示了番茄生物质生产和可加工性的潜在机制。