Suppr超能文献

加速分子动力学在缩氨酸折叠问题中的应用。

Accelerated Molecular Dynamics Applied to the Peptaibol Folding Problem.

机构信息

Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.

Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.

出版信息

Int J Mol Sci. 2019 Aug 30;20(17):4268. doi: 10.3390/ijms20174268.

Abstract

The use of enhanced sampling molecular dynamics simulations to facilitate the folding of proteins is a relatively new approach which has quickly gained momentum in recent years. Accelerated molecular dynamics (aMD) can elucidate the dynamic path from the unfolded state to the near-native state, "flattened" by introducing a non-negative boost to the potential. Alamethicin F30/3 (Alm F30/3), chosen in this study, belongs to the class of peptaibols that are 7-20 residue long, non-ribosomally synthesized, amphipathic molecules that show interesting membrane perturbing activity. The recent studies undertaken on the Alm molecules and their transmembrane channels have been reviewed. Three consecutive simulations of ~900 ns each were carried out where N-terminal folding could be observed within the first 100 ns, while C-terminal folding could only be achieved almost after 800 ns. It took ~1 μs to attain the near-native conformation with stronger potential boost which may take several μs worth of classical MD to produce the same results. The Alm F30/3 hexamer channel was also simulated in an mimicking membrane under an external electric field that correlates with previous experiments. It can be concluded that aMD simulation techniques are suited to elucidate peptaibol structures and to understand their folding dynamics.

摘要

使用增强采样分子动力学模拟来促进蛋白质折叠是一种相对较新的方法,近年来迅速得到了发展。加速分子动力学(aMD)可以阐明从展开状态到近天然状态的动态路径,通过对势能引入非负的促进来“扁平化”。在本研究中选择的 Alamethicin F30/3(Alm F30/3)属于肽类化合物,它们是由 7-20 个残基组成的、非核糖体合成的、两亲性分子,具有有趣的膜扰动活性。最近对 Alm 分子及其跨膜通道的研究已经进行了综述。进行了三次连续的模拟,每次约 900 ns,在第一个 100 ns 内可以观察到 N 端折叠,而 C 端折叠只能在 800 ns 后才能实现。在具有更强势能促进的情况下,需要大约 1 μs 才能达到近天然构象,而这可能需要几 μs 的经典 MD 才能产生相同的结果。还在模拟膜中模拟了 Alamethicin F30/3 六聚体通道,外加一个与先前实验相关的外电场。可以得出结论,aMD 模拟技术适合阐明肽类化合物的结构并理解其折叠动力学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验