Suppr超能文献

用于在系统评价中评估诊断、预后和预测性试验准确性的研究设计分类算法。

An algorithm for the classification of study designs to assess diagnostic, prognostic and predictive test accuracy in systematic reviews.

机构信息

Institute for Research in Operative Medicine, Witten/Herdecke University, Ostmerheimer Str. 200, 51109, Cologne, Germany.

出版信息

Syst Rev. 2019 Sep 3;8(1):226. doi: 10.1186/s13643-019-1131-4.

Abstract

Results of medical tests are the main source to inform clinical decision making. The main information to assess the usefulness of medical tests for correct discrimination of patients are accuracy measures. For the estimation of test accuracy measures, many different study designs can be used. The study design is related to the clinical question to be answered (diagnosis, prognosis, prediction), determines the accuracy measures that can be calculated and it might have an influence on risk of bias. Therefore, a clear and consistent distinction of the different study designs in systematic reviews on test accuracy studies is very important. In this paper, we propose an algorithm for the classification of study designs of test accuracy, that compare the results of an index test (the test to be evaluated) with the results of a reference test (the test whose results are considered as correct/the gold standard) studies in systematic reviews.

摘要

医学检验结果是为临床决策提供信息的主要依据。评估医学检验对正确鉴别患者的有用性的主要信息是准确性测量指标。为了评估检验准确性测量指标,可以使用许多不同的研究设计。研究设计与要回答的临床问题(诊断、预后、预测)相关,决定了可以计算的准确性测量指标,并且可能对偏倚风险产生影响。因此,在系统评价中对检验准确性研究的不同研究设计进行清晰一致的区分非常重要。在本文中,我们提出了一种用于分类检验准确性研究设计的算法,该算法将系统评价中索引检验(待评估检验)的结果与参照检验(被认为是正确的/金标准的检验)的结果进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d197/6720081/110eccef1469/13643_2019_1131_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验