Pastor Ernest, Park Ji-Sang, Steier Ludmilla, Kim Sunghyun, Grätzel Michael, Durrant James R, Walsh Aron, Bakulin Artem A
Centre for Plastic Electronics, Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
Department of Materials, Imperial College London, London, SW7 2AZ, UK.
Nat Commun. 2019 Sep 3;10(1):3962. doi: 10.1038/s41467-019-11767-9.
Hematite (α-FeO) is the most studied artificial oxygen-evolving photo-anode and yet its efficiency limitations and their origin remain unknown. A sub-picosecond reorganisation of the hematite structure has been proposed as the mechanism which dictates carrier lifetimes, energetics and the ultimate conversion yields. However, the importance of this reorganisation for actual device performance is unclear. Here we report an in situ observation of charge carrier self-localisation in a hematite device, and demonstrate that this process affects recombination losses in photoelectrochemical cells. We apply an ultrafast, device-based optical-control method to resolve the subpicosecond formation of small polarons and estimate their reorganisation energy to be ~0.5 eV. Coherent oscillations in the photocurrent signals indicate that polaron formation may be coupled to specific phonon modes (<100 cm). Our results bring together spectroscopic and device characterisation approaches to reveal new photophysics of broadly-studied hematite devices.
赤铁矿(α-FeO)是研究最多的人工析氧光阳极,但其效率限制及其根源仍不清楚。有人提出赤铁矿结构的亚皮秒级重组是决定载流子寿命、能量学和最终转换效率的机制。然而,这种重组对实际器件性能的重要性尚不清楚。在这里,我们报告了在赤铁矿器件中对电荷载流子自局域化的原位观察,并证明这一过程会影响光电化学电池中的复合损失。我们应用一种基于器件的超快光学控制方法来解析小极化子的亚皮秒形成,并估计其重组能约为0.5 eV。光电流信号中的相干振荡表明,极化子的形成可能与特定的声子模式(<100 cm)耦合。我们的结果将光谱学和器件表征方法结合起来,揭示了广泛研究的赤铁矿器件的新光物理特性。