Suppr超能文献

通过介导陷阱态和小极化子跳跃实现低偏置光电化学水分解

Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping.

作者信息

Wu Hao, Zhang Lei, Du Aijun, Irani Rowshanak, van de Krol Roel, Abdi Fatwa F, Ng Yun Hau

机构信息

Low-Carbon and Climate Impact Research Centre, School of Energy and Environment, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.

City University of Hong Kong Shenzhen Research Institute, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, China.

出版信息

Nat Commun. 2022 Oct 20;13(1):6231. doi: 10.1038/s41467-022-33905-6.

Abstract

Metal oxides are promising for photoelectrochemical (PEC) water splitting due to their robustness and low cost. However, poor charge carrier transport impedes their activity, particularly at low-bias voltage. Here we demonstrate the unusual effectiveness of phosphorus doping into bismuth vanadate (BiVO) photoanode for efficient low-bias PEC water splitting. The resulting BiVO photoanode shows a separation efficiency of 80% and 99% at potentials as low as 0.6 and 1.0 V, respectively. Theoretical simulation and experimental analysis collectively verify that the record performance originates from the unique phosphorus-doped BiVO configuration with concurrently mediated carrier density, trap states, and small polaron hopping. With NiFeO cocatalyst, the BiVO photoanode achieves an applied bias photon-to-current efficiency of 2.21% at 0.6 V. The mechanistic understanding of the enhancement of BiVO properties provides key insights in trap state passivation and polaron hopping for most photoactive metal oxides.

摘要

金属氧化物因其稳定性和低成本,在光电化学(PEC)水分解方面具有广阔前景。然而,载流子传输不畅阻碍了它们的活性,尤其是在低偏压下。在此,我们展示了磷掺杂到钒酸铋(BiVO)光阳极中对高效低偏压PEC水分解具有异常显著的效果。所得的BiVO光阳极在低至0.6 V和1.0 V的电位下分别表现出80%和99%的分离效率。理论模拟和实验分析共同证实,这一创纪录的性能源于独特的磷掺杂BiVO结构,其同时调节了载流子密度、陷阱态和小极化子跳跃。与NiFeO助催化剂一起,BiVO光阳极在0.6 V时实现了2.21%的外加偏压光子到电流效率。对BiVO性能增强的机理理解为大多数光活性金属氧化物的陷阱态钝化和极化子跳跃提供了关键见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b802/9585101/483629b13baf/41467_2022_33905_Fig1_HTML.jpg

相似文献

1
Low-bias photoelectrochemical water splitting via mediating trap states and small polaron hopping.
Nat Commun. 2022 Oct 20;13(1):6231. doi: 10.1038/s41467-022-33905-6.
3
Unconventional Substitution for BiVO to Enhance Photoelectrocatalytic Performance by Accelerating Polaron Hopping.
ACS Appl Mater Interfaces. 2023 Mar 22;15(11):14359-14368. doi: 10.1021/acsami.2c23169. Epub 2023 Mar 7.
4
Charge Transport Enhancement in BiVO Photoanode for Efficient Solar Water Oxidation.
Materials (Basel). 2023 Apr 27;16(9):3414. doi: 10.3390/ma16093414.
5
7
The CuSCN layer between BiVO and NiFeO for facilitating photogenerated carrier transfer and water oxidation kinetics.
J Colloid Interface Sci. 2024 Jul 15;666:57-65. doi: 10.1016/j.jcis.2024.04.017. Epub 2024 Apr 4.
8
Gradient-Doped BiVO Dual Photoanodes for Highly Efficient Photoelectrochemical Water Splitting.
Chemphyschem. 2025 Jan 2;26(1):e202400692. doi: 10.1002/cphc.202400692. Epub 2024 Nov 12.
9
Unveiling the effect of the structural transformation of CoZn-MOF on BiVO photoanode for efficient photoelectrochemical water oxidation.
J Colloid Interface Sci. 2024 Jun 15;664:838-847. doi: 10.1016/j.jcis.2024.03.038. Epub 2024 Mar 6.
10
Dual modification of BiVO photoanode for synergistically boosting photoelectrochemical water splitting.
J Colloid Interface Sci. 2023 Sep 15;646:238-244. doi: 10.1016/j.jcis.2023.04.173. Epub 2023 May 5.

引用本文的文献

1
Enhanced Photoelectrochemical Performance of BiVO Photoanodes Co-Modified with Borate and NiFeO.
Micromachines (Basel). 2025 Jul 27;16(8):866. doi: 10.3390/mi16080866.
2
Tracking hot electrons in single-atom alloy with small-molecule probes.
Natl Sci Rev. 2025 Jul 8;12(8):nwaf261. doi: 10.1093/nsr/nwaf261. eCollection 2025 Aug.
3
Unlocking the Potential of Photoelectrochemical Water Splitting via Heterointerface Charge Polarization.
Adv Sci (Weinh). 2025 Jul;12(26):e2502384. doi: 10.1002/advs.202502384. Epub 2025 Apr 17.
4
Highly Active Oxygen Evolution Integrating with Highly Selective CO-to-CO Reduction.
Nanomicro Lett. 2025 Mar 13;17(1):184. doi: 10.1007/s40820-025-01688-2.
5
Tuning surface hydrophilicity of a BiVO photoanode through interface engineering for efficient PEC water splitting.
RSC Adv. 2025 Jan 10;15(2):815-823. doi: 10.1039/d4ra08254k. eCollection 2025 Jan 9.
6
Enhancing Photoelectrochemical Water Oxidation Using Ferromagnetic Materials and Magnetic Fields.
J Am Chem Soc. 2024 Dec 18;146(50):34681-34689. doi: 10.1021/jacs.4c13017. Epub 2024 Dec 4.
8
Band Diagram Insights into the Kinetic and Thermodynamic Engineering of Tandem Photocatalytic Cells.
J Phys Chem C Nanomater Interfaces. 2024 Oct 23;128(43):18465-18482. doi: 10.1021/acs.jpcc.4c04508. eCollection 2024 Oct 31.

本文引用的文献

2
Boosting Charge Transport in BiVO Photoanode for Solar Water Oxidation.
Adv Mater. 2022 Feb;34(8):e2108178. doi: 10.1002/adma.202108178. Epub 2022 Jan 18.
3
In Situ Formation of Oxygen Vacancies Achieving Near-Complete Charge Separation in Planar BiVO Photoanodes.
Adv Mater. 2020 Jul;32(26):e2001385. doi: 10.1002/adma.202001385. Epub 2020 May 14.
4
Ultra-Narrow Depletion Layers in a Hematite Mesocrystal-Based Photoanode for Boosting Multihole Water Oxidation.
Angew Chem Int Ed Engl. 2020 Jun 2;59(23):9047-9054. doi: 10.1002/anie.202001919. Epub 2020 Apr 30.
5
Impact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO Photoanodes.
J Am Chem Soc. 2019 Nov 27;141(47):18791-18798. doi: 10.1021/jacs.9b09056. Epub 2019 Nov 13.
6
Interfacial oxygen vacancies yielding long-lived holes in hematite mesocrystal-based photoanodes.
Nat Commun. 2019 Oct 23;10(1):4832. doi: 10.1038/s41467-019-12581-z.
7
Freeing the Polarons to Facilitate Charge Transport in BiVO from Oxygen Vacancies with an Oxidative 2D Precursor.
Angew Chem Int Ed Engl. 2019 Dec 19;58(52):19087-19095. doi: 10.1002/anie.201912475. Epub 2019 Nov 8.
8
Efficient BiVO Photoanodes by Postsynthetic Treatment: Remarkable Improvements in Photoelectrochemical Performance from Facile Borate Modification.
Angew Chem Int Ed Engl. 2019 Dec 19;58(52):19027-19033. doi: 10.1002/anie.201911303. Epub 2019 Nov 8.
9
In situ observation of picosecond polaron self-localisation in α-FeO photoelectrochemical cells.
Nat Commun. 2019 Sep 3;10(1):3962. doi: 10.1038/s41467-019-11767-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验