Suppr超能文献

光伏锑硫属化合物中载流子自陷的耦合电子与非谐结构动力学

Coupled Electronic and Anharmonic Structural Dynamics for Carrier Self-Trapping in Photovoltaic Antimony Chalcogenides.

作者信息

Tao Weijian, Zhu Leilei, Li Kanghua, Chen Chao, Chen Yuzhong, Li Yujie, Li Xufeng, Tang Jiang, Shang Honghui, Zhu Haiming

机构信息

State Key Laboratory of Modern Optical Instrumentation, Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027, China.

State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190, China.

出版信息

Adv Sci (Weinh). 2022 Sep;9(25):e2202154. doi: 10.1002/advs.202202154. Epub 2022 Jun 26.

Abstract

V-VI antimony chalcogenide semiconductors have shown exciting potentials for thin film photovoltaic applications. However, their solar cell efficiencies are strongly hampered by anomalously large voltage loss (>0.6 V), whose origin remains controversial so far. Herein, by combining ultrafast pump-probe spectroscopy and density functional theory (DFT) calculation, the coupled electronic and structural dynamics leading to excited state self-trapping in antimony chalcogenides with atomic level characterizations is reported. The electronic dynamics in Sb Se indicates a ≈20 ps barrierless intrinsic self-trapping, with electron localization and accompanied lattice distortion given by DFT calculations. Furthermore, impulsive vibrational coherences unveil key SbSe vibrational modes and their real-time interplay that drive initial excited state relaxation and energy dissipation toward stabilized small polaron through electron-phonon and subsequent phonon-phonon coupling. This study's findings provide conclusive evidence of carrier self-trapping arising from intrinsic lattice anharmonicity and polaronic effect in antimony chalcogenides and a new understanding on the coupled electronic and structural dynamics for redefining excited state properties in soft semiconductor materials.

摘要

V - VI族硫属锑化物半导体在薄膜光伏应用中展现出了令人兴奋的潜力。然而,它们的太阳能电池效率受到异常大的电压损失(>0.6 V)的严重阻碍,其起源至今仍存在争议。在此,通过结合超快泵浦 - 探测光谱和密度泛函理论(DFT)计算,报道了在具有原子水平表征的硫属锑化物中导致激发态自陷的耦合电子和结构动力学。Sb₂Se₃中的电子动力学表明存在一个约20 ps的无势垒本征自陷过程,密度泛函理论计算给出了电子局域化以及伴随的晶格畸变情况。此外,脉冲振动相干揭示了关键的Sb - Se振动模式及其实时相互作用,这些相互作用通过电子 - 声子以及随后的声子 - 声子耦合驱动初始激发态弛豫和能量耗散,朝着稳定的小极化子方向发展。这项研究的结果为硫属锑化物中由本征晶格非谐性和极化子效应引起的载流子自陷提供了确凿证据,并为重新定义软半导体材料中的激发态性质的耦合电子和结构动力学提供了新的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba99/9443444/2f79b5cbd215/ADVS-9-2202154-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验