Suppr超能文献

一种经证明可保留吸引子的布尔网络模型约简方法。

A REDUCTION METHOD FOR BOOLEAN NETWORK MODELS PROVEN TO CONSERVE ATTRACTORS.

作者信息

Saadatpour Assieh, Albert RÉka, Reluga Timothy C

机构信息

Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.

Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

SIAM J Appl Dyn Syst. 2013;12(4):1997-2011. doi: 10.1137/13090537X. Epub 2013 Nov 21.

Abstract

Boolean models, wherein each component is characterized with a binary (ON or OFF) variable, have been widely employed for dynamic modeling of biological regulatory networks. However, the exponential dependencse of the size of the state space of these models on the number of nodes in the network can be a daunting prospect for attractor analysis of large-scale systems. We have previously proposed a network reduction technique for Boolean models and demonstrated its applicability on two biological systems, namely, the abscisic acid signal transduction network as well as the T-LGL leukemia survival signaling network. In this paper, we provide a rigorous mathematical proof that this method not only conserves the fixed points of a Boolean network, but also conserves the complex attractors of general asynchronous Boolean models wherein at each time step a randomly selected node is updated. This method thus allows one to infer the long-term dynamic properties of a large-scale system from those of the corresponding reduced model.

摘要

布尔模型中,每个组件由一个二元(开或关)变量表征,已被广泛用于生物调控网络的动态建模。然而,这些模型状态空间的大小对网络中节点数量的指数依赖性,对于大规模系统的吸引子分析而言可能是一个艰巨的挑战。我们之前提出了一种针对布尔模型的网络约简技术,并在两个生物系统中证明了其适用性,即脱落酸信号转导网络和T-LGL白血病生存信号网络。在本文中,我们提供了一个严格的数学证明,该方法不仅保留了布尔网络的不动点,还保留了一般异步布尔模型的复杂吸引子,其中在每个时间步随机选择一个节点进行更新。因此,该方法允许人们从相应的约简模型推断大规模系统的长期动态特性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02bf/7597850/147c762b4ff8/nihms-1044744-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验