Suppr超能文献

MetaTOR:一种从哺乳动物肠道邻近连接(meta3C)文库中恢复高质量宏基因组分箱的计算流程。

MetaTOR: A Computational Pipeline to Recover High-Quality Metagenomic Bins From Mammalian Gut Proximity-Ligation (meta3C) Libraries.

作者信息

Baudry Lyam, Foutel-Rodier Théo, Thierry Agnès, Koszul Romain, Marbouty Martial

机构信息

Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR3525, CNRS, Paris, France.

Institut Pasteur, Center of Bioinformatics, Biostatistics and Integrative Biology (C3BI), Paris, France.

出版信息

Front Genet. 2019 Aug 20;10:753. doi: 10.3389/fgene.2019.00753. eCollection 2019.

Abstract

Characterizing the complete genomic structure of complex microbial communities would represent a key step toward the understanding of their diversity, dynamics, and evolution. Current metagenomics approaches aiming at this goal are typically done by analyzing millions of short DNA sequences directly extracted from the environment. New experimental and computational approaches are constantly sought for to improve the analysis and interpretation of such data. We developed MetaTOR, an open-source computational solution that bins DNA contigs into individual genomes according to their 3D contact frequencies. Those contacts are quantified by chromosome conformation capture experiments (3C, Hi-C), also known as proximity-ligation approaches, applied to metagenomics samples (meta3C). MetaTOR was applied on 20 meta3C libraries of mice gut microbiota. We quantified the program ability to recover high-quality metagenome-assembled genomes (MAGs) from metagenomic assemblies generated directly from the meta3C libraries. Whereas nine high-quality MAGs are identified in the 148-Mb assembly generated using a single meta3C library, MetaTOR identifies 82 high-quality MAGs in the 763-Mb assembly generated from the merged 20 meta3C libraries, corresponding to nearly a third of the total assembly. Compared to the hybrid binning softwares MetaBAT or CONCOCT, MetaTOR recovered three times more high-quality MAGs. These results underline the potential of 3C-/Hi-C-based approaches in metagenomic projects.

摘要

描绘复杂微生物群落的完整基因组结构将是迈向理解其多样性、动态变化及进化的关键一步。目前旨在实现这一目标的宏基因组学方法通常是通过分析直接从环境中提取的数百万条短DNA序列来完成的。人们一直在寻求新的实验和计算方法,以改进对此类数据的分析和解读。我们开发了MetaTOR,这是一种开源计算解决方案,可根据DNA重叠群的三维接触频率将其归类到各个基因组中。这些接触通过应用于宏基因组学样本(meta3C)的染色体构象捕获实验(3C、Hi-C)(也称为邻近连接方法)进行量化。MetaTOR应用于20个小鼠肠道微生物群的meta3C文库。我们量化了该程序从直接由meta3C文库生成的宏基因组组装中恢复高质量宏基因组组装基因组(MAG)的能力。使用单个meta3C文库生成的148-Mb组装中鉴定出9个高质量MAG,而MetaTOR在由合并的20个meta3C文库生成的763-Mb组装中鉴定出82个高质量MAG,几乎占总组装的三分之一。与混合分箱软件MetaBAT或CONCOCT相比,MetaTOR恢复的高质量MAG多两倍。这些结果突显了基于3C-/Hi-C方法在宏基因组学项目中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1994/6710406/2cc1cb7a83eb/fgene-10-00753-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验