Suppr超能文献

bin3C:利用 Hi-C 测序数据准确解析宏基因组组装基因组。

bin3C: exploiting Hi-C sequencing data to accurately resolve metagenome-assembled genomes.

机构信息

The ithree institute, University of Technology Sydney, 15 Broadway, Ultimo, 2007, NSW, Australia.

出版信息

Genome Biol. 2019 Feb 26;20(1):46. doi: 10.1186/s13059-019-1643-1.

Abstract

Most microbes cannot be easily cultured, and metagenomics provides a means to study them. Current techniques aim to resolve individual genomes from metagenomes, so-called metagenome-assembled genomes (MAGs). Leading approaches depend upon time series or transect studies, the efficacy of which is a function of community complexity, target abundance, and sequencing depth. We describe an unsupervised method that exploits the hierarchical nature of Hi-C interaction rates to resolve MAGs using a single time point. We validate the method and directly compare against a recently announced proprietary service, ProxiMeta. bin3C is an open-source pipeline and makes use of the Infomap clustering algorithm ( https://github.com/cerebis/bin3C ).

摘要

大多数微生物都难以培养,而宏基因组学为研究它们提供了一种手段。目前的技术旨在从宏基因组中解析单个基因组,即所谓的宏基因组组装基因组(MAG)。主要方法依赖于时间序列或横断研究,其效果是群落复杂性、目标丰度和测序深度的函数。我们描述了一种无监督的方法,该方法利用 Hi-C 相互作用率的层次性质,仅使用一个时间点来解析 MAG。我们验证了该方法,并与最近公布的专有服务 ProxiMeta 进行了直接比较。bin3C 是一个开源流水线,并利用 Infomap 聚类算法(https://github.com/cerebis/bin3C)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c79/6391755/32c39ab7d9c1/13059_2019_1643_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验