NextE&M Research Institute , Environmental Research Center , 410 Jeongseojin-ro , Seo-gu, Incheon 22689 , Republic of Korea.
Department of Chemical Engineering , Inha University , 100 Inha-ro , Nam-gu, Incheon 22212 , Republic of Korea.
ACS Nano. 2019 Sep 24;13(9):10761-10767. doi: 10.1021/acsnano.9b05570. Epub 2019 Sep 9.
Biological ion channels exhibiting selective and rectified ion transport properties feature nanoscale asymmetries in their physical structure, chemical composition, and charge distribution. Inspired by this, a multi-asymmetric ion-diode membrane (IDM) having a heterojunction between a positively charged anodic aluminum oxide membrane with conical macropores and a negatively charged Nafion membrane with very narrow mesopores was designed and practically fabricated in this study. Experiments and theoretical calculations demonstrated that the proposed membrane has the highest selectivity among IDMs and provides complete suppression of the concentration polarization (CP) effect limiting the current density in ion-exchange membrane electrodialysis. These findings present direct evidence that the physical and chemical design of the channel structure can provide both superior selectivity and a zero CP effect to IDMs and practical fabrication methods of IDMs for diverse, promising membrane applications.
具有选择性和整流离子输运特性的生物离子通道在其物理结构、化学组成和电荷分布方面具有纳米级的不对称性。受此启发,本研究设计并实际制备了一种具有正电荷阳极氧化铝膜(具有锥形大孔)和负电荷 Nafion 膜(具有非常窄的中孔)之间异质结的多不对称离子二极管膜(IDM)。实验和理论计算表明,所提出的膜在 IDM 中具有最高的选择性,并完全抑制了限制离子交换膜电渗析中电流密度的浓差极化(CP)效应。这些发现为通道结构的物理和化学设计可以为 IDM 提供卓越的选择性和零 CP 效应以及 IDM 的实际制造方法提供了直接证据,为各种有前途的膜应用提供了可能。